2016年高考数学热点题型和提分秘籍专题04函数及其表示理(含解析)新人教A版【高频考点解读】1.了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用.【热点题型】题型一考查函数的定义域例1.(1)(函数f(x)=+的定义域为()A.(-3,0]B.(-3,1]C.(-∞,-3)∪(-3,0]D.(-∞,-3)∪(-3,1](2)函数y=ln+的定义域为________.【答案】(1)A(2)(0,1]【解析】【提分秘籍】1.函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,归纳起来常见的命题角度有:(1)求给定函数解析式的定义域.(2)已知f(x)的定义域,求f(g(x))的定义域.(3)已知定义域确定参数问题.2.简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解.(2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解.(3)若已知函数f(x)的定义域为[a,b],则函数f(g(x))的定义域由不等式a≤g(x)≤b求出.【举一反三】已知f(x)的定义域为,求函数y=f的定义域.题型二考查函数的解析式例2、(1)已知f(1-cosx)=sin2x,求f(x)的解析式;(2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x-1,求f(x)的解析式;(3)已知f(x)+2f=x(x≠0),求f(x)的解析式.【解析】(1)f(1-cosx)=sin2x=1-cos2x,令t=1-cosx,则cosx=1-t,t∈[0,2],∴f(t)=1-(1-t)2=2t-t2,t∈[0,2],即f(x)=2x-x2,x∈[0,2].(2)设f(x)=ax2+bx+c(a≠0),由f(0)=2,得c=2,f(x+1)-f(x)=a(x+1)2+b(x+1)-ax2-bx=x-1,即2ax+a+b=x-1,∴即∴f(x)=x2-x+2.(3) f(x)+2f=x,∴f+2f(x)=.解方程组得f(x)=-(x≠0).【提分秘籍】求函数解析式的常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法.(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.(4)解方程组法:已知关于f(x)与f或f(-x)的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).【举一反三】已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为()A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+3【答案】B题型三考查分段函数例3、如图,点P从点O出发,分别按逆时针方向沿周长均为12的正三角形、正方形运动一周,O,P两点连线的距离y与点P走过的路程x的函数关系分别记为y=f(x),y=g(x),定义函数h(x)=对于函数y=h(x),下列结论正确的个数是()①h(4)=;②函数h(x)的图象关于直线x=6对称;③函数h(x)的值域为[0,];④函数h(x)的递增区间为(0,5).A.1B.2C.3D.4【答案】C【解析】【提分秘籍】(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求的变量值或自变量的取值范围,应根据每一段的解析式分别求解.但要注意检验,是否符合相应段的自变量的取值范围.【举一反三】已知f(x)=则f+f等于________.【答案】4【解析】f=2×=,f=f=f=2×=,f+f=+=4.【高考风向标】【2015高考浙江,理7】存在函数满足,对任意都有()A.B.C.D.【答案】D.【解析】(2014·安徽卷)设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f=()A.B.C.0D.-【答案】A【解析】由已知可得,f=f+sin=f+sin+sin=f+sin+sin+sin=2sin+sin=sin=.(2014·北京卷)下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=(x-1)2C.y=2-xD.y=log0.5(x+1)【答案】A【解析】由基本初等函数的性质得,选项B中的函数在(0,1)上递减,选项C,D中的函数在(0,+∞)上为减函数,所以排除B,C,D,选A.(2014·福建卷)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的...