2016-2017学年河北省衡水市高一(上)期中数学试卷(A卷)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x>﹣1},则()A.0⊆AB.{0}⊆AC.{0}∈AD.∈∅A2.不论a,b为何实数,a2+b2﹣2a﹣4b+8的值()A.总是正数B.总是负数C.可以是零D.可以是正数也可以是负数3.已知集合A={﹣1,1},B={x|ax+2=0},若B⊆A,则实数a的所有可能取值的集合为()A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}4.下列各图中,可表示函数y=f(x)的图象的只可能是()A.B.C.D.5.设函数f(x)=2x+1的定义域为[1,5],则函数f(2x﹣3)的定义域为()A.[1,5]B.[3,11]C.[3,7]D.[2,4]6.已知函数f(x)=,若∀x∈R,则k的取值范围是()A.0≤k<B.0<k<C.k<0或k>D.0<k≤7.函数f(x)=的最大值是()A.B.C.D.8.已知函数f(x)=,则f(3)的值等于()A.﹣2B.﹣1C.1D.29.已知函数f(x)=是R上的增函数,则a的取值范围是()A.﹣3≤a<0B.﹣3≤a≤﹣2C.a≤﹣2D.a<010.f(x)=x2﹣2x,g(x)=ax+2(a>0),若对任意的x1∈[﹣1,2],存在x0∈[﹣1,2],使g(x1)=f(x0),则a的取值范围是()A.B.C.[3,+∞)D.(0,3]11.已知定义在R上的函数f(x)在(﹣∞,﹣2)上是减函数,若g(x)=f(x﹣2)是奇函数,且g(2)=0,则不等式xf(x)≤0的解集是()A.(﹣∞,﹣2]∪[2,+∞)B.[﹣4,﹣2]∪[0,+∞)C.(﹣∞,﹣4]∪[﹣2,+∞)D.(﹣∞,﹣4]∪[0,+∞)12.已知f(x)=,则f(f(x))≤3的解集为()A.(﹣∞,﹣3]B.[﹣3,+∞)C.(﹣∞,]D.[,+∞)二、填空题:本大题共4小题,每小题5分,共20分.把答案直接答在答题纸上.13.函数y=|x2﹣4x|的增区间是.14.已知一次函数y=x+1与二次函数y=x2﹣x﹣1的图象交于两点A(x1,y1),B(x2,y2),则+=.15.设f(x)=1﹣2x2,g(x)=x2﹣2x,若,则F(x)的最大值为.16.已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=(x>0),则给出以下四个结论:①函数f(x)的值域为[0,1];②函数f(x)的图象是一条曲线;③函数f(x)是(0,+∞)上的减函数;④函数g(x)=f(x)﹣a有且仅有3个零点时.其中正确的序号为.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.设集合A={x|2≤x≤4},B={x|x>3,或x<1},C={x|t+1<x<2t},t∈R.(Ⅰ)求A∪∁UB;(Ⅱ)若A∩C=C,求t的取值范围.18.已知函数f(x)=1+(﹣2<x≤2)(1)用分段函数的形式表示该函数;(2)画出该函数的图象;(3)写出该函数的值域、单调区间.19.函数f(x)=2x﹣的定义域为(0,1](a为实数).(1)当a=1时,求函数y=f(x)的值域;(2)若函数y=f(x)在定义域上是减函数,求a的取值范围.20.若二次函数f(x)=ax2+bx+c(a≠0)满足f(x+1)﹣f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[﹣1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.21.已知函数f(x)在其定义域(0,+∞),f(2)=1,f(xy)=f(x)+f(y),当x>1时,f(x)>0;(1)求f(8)的值;(2)讨论函数f(x)在其定义域(0,+∞)上的单调性;(3)解不等式f(x)+f(x﹣2)≤3.22.设函数f(x)=x2﹣2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)﹣f(x2)|≤8,求t的取值范围.2016-2017学年河北省衡水市冀州中学高一(上)期中数学试卷(A卷)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x>﹣1},则()A.0⊆AB.{0}⊆AC.{0}∈AD.∈∅A【考点】12:元素与集合关系的判断.【分析】利用集合与元素的关系应当是属于关系、集合与集合之间的关系应当是包含关系进行判断即可.【解答】解:A.0⊆A错误,应当是0∈A,集合与元素的关系应当是属于关系...