11.5数学归纳法[基础送分提速狂刷练]一、选择题1.(2016·安庆高三月考)用数学归纳法证明2n>n2(n≥5,n∈N*),第一步应验证()A.n=4B.n=5C.n=6D.n=7答案B解析根据数学归纳法的步骤,首先要验证n取第一个值时命题成立,又n≥5,故第一步验证n=5.故选B.2.用数学归纳法证明12+22+…+(n-1)2+n2+(n-1)2+…+22+12=时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是()A.(k+1)2+2k2B.(k+1)2+k2C.(k+1)2D.(k+1)[2(k+1)2+1]答案B解析由n=k到n=k+1时,左边增加(k+1)2+k2.故选B.3.(2018·沈阳调研)用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,利用归纳法假设证明n=k+1时,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3答案A解析假设n=k时,原式k3+(k+1)3+(k+2)3能被9整除,当n=k+1时,(k+1)3+(k+2)3+(k+3)3为了能用上面的归纳假设,只须将(k+3)3展开,让其出现k3即可.故选A.4.已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N*,都能使m整除f(n),则最大的m的值为()A.30B.26C.36D.6答案C解析 f(1)=36,f(2)=108=3×36,f(3)=360=10×36,∴f(1),f(2),f(3)都能被36整除,猜想f(n)能被36整除.证明如下:当n=1,2时,由以上得证.假设当n=k(k≥2)时,f(k)=(2k+7)·3k+9能被36整除,则当n=k+1时,f(k+1)-f(k)=(2k+9)·3k+1-(2k+7)·3k=(6k+27)·3k-(2k+7)·3k=(4k+20)·3k=36(k+5)·3k-2(k≥2),∴f(k+1)能被36整除. f(1)不能被大于36的数整除,∴所求最大的m的值为36.5.(2017·泉州模拟)用数学归纳法证明n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2(n∈N*)时,若记f(n)=n+(n+1)+(n+2)+…+(3n-2),则f(k+1)-f(k)等于()A.3k-1B.3k+1C.8kD.9k答案C解析因为f(k)=k+(k+1)+(k+2)+…+(3k-2),f(k+1)=(k+1)+(k+2)+…+(3k-2)+(3k-1)+(3k)+(3k+1),则f(k+1)-f(k)=3k-1+3k+3k+1-k=8k.故选C.6.(2018·太原质检)平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1B.2nC.D.n2+n+1答案C解析1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n条直线最多可将平面分成11+(1+2+3+…+n)=1+=个区域.故选C.7.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,第n个三角形数为=n2+n.记第n个k边形数为N(n,k)(k≥3),以下列出了部分k边形数中第n个数的表达式:三角形数N(n,3)=n2+n;正方形数N(n,4)=n2;五边形数N(n,5)=n2-n;六边形数N(n,6)=2n2-n.可以推测N(n,k)的表达式,由此计算N(10,24)=()A.500B.1000C.1500D.2000答案B解析由已知得,N(n,3)=n2+n=n2+n,N(n,4)=n2=n2+n,N(n,5)=n2-n=n2+n,N(n,6)=2n2-n=n2+n,根据归纳推理可得,N(n,k)=n2+n.所以N(10,24)=×102+×10=1100-100=1000,故答案为1000.选B.8.若数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4,猜想其通项公式为()A.3n+1B.4nC.5n-1D.6n-2答案D解析由a1=4求得a2=10,a3=16,经检验an=6n-2.故选D.二、填空题9.设Sn=1++++…+,则Sn+1-Sn=______.答案+++…+解析Sn+1=1++++…+Sn+1-Sn=+++…+.10.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,下图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数,则用n表示的f(n)=________.答案3n2-3n+1解析由于f(2)-f(1)=7-1=6,f(3)-f(2)=19-7=2×6,推测当n≥2时,有f(n)-f(n-1)=6(n-1),所以f(n)=[f(n)-f(n-1)]+[f(n-1)-f(n-2)]+[f(n-2)-f(n-3)]+…+[f(2)-f(1)]+f(1)=6[(n-1)+(n-2)+…+2+1]+1=3n2-3n+1.又f(1)=1=3×12-3×1+1,∴f(n)=3n2-3n+1.11.设数列{an}的前n项和为Sn,且对任意的自然数n都有(Sn-1)2=anSn,通过计算...