【成才之路】高中数学3-2-2函数模型的应用实例能力强化提升新人教A版必修1一、选择题1.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()A.y=0.2xB.y=(x2+2x)C.y=D.y=0.2+log16x[答案]C[解析]当x=1时,否定B,当x=2时,否定D,当x=3时,否定A,故选C.2.某工厂生产甲、乙两种成本不同的产品,原来按成本价出售,由于市场销售发生变化,甲产品连续两次提价,每次提价都是20%;同时乙产品连续两次降价,每次降价都是20%,结果都以92.16元出售,此时厂家同时出售甲、乙产品各一件,盈亏的情况是()A.不亏不盈B.赚23.68元C.赚47.32元D.亏23.68元[答案]D[解析]设甲、乙产品原来每件分别为x元、y元,则x(1+20%)2=92.16,y(1-20%)2=92.16,∴x=64,y=144,64+144-92.16×2=23.68.3.用清水洗衣服,若每次能洗去污垢的,要使存留的污垢不超过1%,则至少要洗的次数是()A.3B.4C.5D.6[答案]B[解析]设至少需要清洗n次,由已知得(1-)n≤1%≤即.∴4n≥100∴n≥4,故选B.4.某种产品市场销量情况如图所示,其中:l1表示产品各年产量的变化规律;l2表示产品各年的销售情况,下列叙述:①产品产量、销量均以直线上升,仍可按原生产计划进行;②产品已经出现了供大于求的情况,价格将下跌;③产品的库存积压将越来越严重,应压缩产量或扩大销量;④产品的产量、销量均以一定的年增长率增加.你认为较合理的是()A.①②③B.①③④C.②④D.②③[答案]D5.已知A、B两地相距150km,某人开汽车以60km/h的速度从A地到达B地,在B地停留一小时后再以50km/h的速度返回A地,把汽车离开A地的距离x表示为时间t的函数,表达式是()A.x=60tB.x=60t+50C.x=D.x=[答案]D[解析]从A地到B地的来回时间分别为:=2.5,=3,x=故选D.6“”.依法纳税是每个公民应尽的义务,国家征收个人所得税是分段计算的,总收入不超过800元,免征个人所得税,超过800元部分需征税,设全月纳税所得额为x,x=全月总收入-800元,税率见下表:级数全月纳税所得额税率1不超过500元部分5%2超过500元至2000元部分10%3超过2000元至5000元部分15%………9超过10000元部分45%某人一月份应缴纳此项税款26.78元,则他当月工资总收入介于()A.800~900元B.900~1200元C.1200~1500元D.1500~2600元[答案]C[解析]解法1:(估算法)由500×5%=25元,100×10%=10元,故某人当月工资应在1300~1400元之间,故选C.解法2:(逆推验证法)设某人当月工资为1200元或1500元,则其应纳税款分别为400×5%=20元,500×5%+200×10%=45元.可排除A,B,D,故选C.7.某店从水果批发市场购得椰子两筐,连同运费总共花了300元,回来后发现有12个是坏的,不能将它们出售,余下的椰子按高出成本价1元/个售出,售完后共赚78元.则这两筐椰子原来的总个数为()A.180B.160C.140D.120[答案]D[解析]设原来两筐椰子的总个数为x,成本价为a元/个,则,解得,故这两筐椰子原来共有120个.8.在股票买卖过程中,经常用两种曲线来描述价格变化情况,一种是即时价格曲线y=f(x),另一种是平均价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元,下面给出了四个图象,实线表示y=f(x),虚线表示y=g(x),其中正确的是()[答案]C[解析]即时价格若一直下跌,则平均价格也应该一直下跌,故排除A、D;即时价格若一路上升,则平均价格也应一直上升,排除B.(也可以由x从0开始增大时,f(x)与g(x)应在y轴上有相同起点,排除A、D),故选C.二、填空题9.现测得(x,y)的两组值为(1,2),(2,5),现有两个拟合模型,甲:y=x2+1,乙:y=3x-1,若又测得(x,y)的一组对应值为(3,10.2),则应选用________作为拟合模型较好.[答案]甲[解析]代入x=3,可得甲y=10,乙,y=8.显然选用甲作为拟合模型较好.10.长为4、宽为3的矩形,当长增加x,且宽减少时面积最大,此时x=________,最大面积S=________.[答案]1[解析]S=(4+x)=-+x+12=-(x-1)2,当x=1时,Smax=.11.某养...