题型三由数列的前n项和nS与通项na的关系求通项na(推荐时间:30分钟)1.已知数列{an}的前n项和为Sn,且满足an+2Sn·Sn-1=0(n≥2),a1=.(1)求证:为等差数列;(2)求an的表达式.2.(·江苏)设M为部分正整数组成的集合,数列{an}的首项a1=1,前n项和为Sn.已知对任意的整数k∈M,当整数n>k时,Sn+k+Sn-k=2(Sn+Sk)都成立.(1)设M={1},a2=2,求a5的值;(2)设M={3,4},求数列{an}的通项公式.答案1.(1)证明∵an=Sn-Sn-1(n≥2),an+2Sn·Sn-1=0(n≥2),∴Sn-Sn-1+2Sn·Sn-1=0.∵Sn≠0,∴-=2(n≥2).由等差数列的定义,可知是以==2为首项,以2为公差的等差数列.(2)解方法一由(1),知=+(n-1)d=2+(n-1)×2=2n,∴Sn=.当n≥2时,有an=-2Sn·Sn-1=-;当n=1,a1=,不满足上式,故an=方法二由(1),知=+(n-1)d=2+(n-1)×2=2n,∴Sn=.当n≥2时,有an=Sn-Sn-1=-=-,当n=1时,a1=,不满足上式,故an=2.解(1)由题设知,当n≥2时,Sn+1+Sn-1=2(Sn+S1),即(Sn+1-Sn)-(Sn-Sn-1)=2S1,从而an+1-an=2a1=2.又a2=2,故当n≥2时,an=a2+2(n-2)=2n-2.所以a5的值为8.(2)由题设知,当k∈M={3,4}且n>k时,Sn+k+Sn-k=2Sn+2Sk且Sn+1+k+Sn+1-k=2Sn+1+2Sk,两式相减得an+1+k+an+1-k=2an+1,即an+1+k-an+1=an+1-an+1-k,所以当n≥8时,an-6,an-3,an,an+3,an+6成等差数列,且an-6,an-2,an+2,an+6也成等差数列.从而当n≥8时,2an=an+3+an-3=an+6+an-6,(*)且an+6+an-6=an+2+an-2,所以当n≥8时,2an=an+2+an-2,即an+2-an=an-an-2.于是当n≥9时,an-3,an-1,an+1,an+3成等差数列,从而an+3+an-3=an+1+an-1,故由(*)式知2an=an+1+an-1,即an+1-an=an-an-1.当n≥9时,设d=an-an-1.当2≤m≤8时,m+6≥8,从而由(*)式知2am+6=am+am+12,故2am+7=am+1+am+13.从而2(am+7-am+6)=am+1-am+(am+13-am+12),于是am+1-am=2d-d=d.因此,an+1-an=d对任意n≥2都成立.又由Sn+k+Sn-k-2Sn=2Sk(k∈{3,4})可知(Sn+k-Sn)-(Sn-Sn-k)=2Sk,故9d=2S3且16d=2S4.解得a4=d.从而a2=d,a1=.因此,数列{an}为等差数列.由a1=1知d=2,所以数列{an}的通项公式为an=2n-1.