第24练数列求和问题[题型分析·高考展望]数列求和是数列部分高考考查的两大重点之一,主要考查等差、等比数列的前n项和公式以及其他求和方法,尤其是错位相减法、裂项相消法是高考的热点内容,常与通项公式相结合考查,有时也与函数、方程、不等式等知识交汇,综合命题.常考题型精析题型一分组转化法求和例1等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn.点评分组求和常见的方法:(1)根据等差、等比数列分组,即分组后,每一组可能是等差数列或等比数列.(2)根据正号、负号分组.(3)根据数列的周期性分组.(4)根据奇数项、偶数项分组.变式训练1已知等差数列{an}的前n项和为Sn,n∈N*,a3=5,S10=100.(1)求数列{an}的通项公式;(2)设bn=2an+2n,求数列{bn}的前n项和Tn.题型二错位相减法求和例2(2015·山东)设数列{an}的前n项和为Sn.已知2Sn=3n+3.(1)求{an}的通项公式;(2)若数列{bn}满足anbn=log3an,求{bn}的前n项和Tn.点评错位相减法的关注点:(1)适用题型:等差数列{an}乘以等比数列{bn}对应项“{an·bn}”型数列求和.(2)步骤:①求和时先乘以数列{bn}的公比.②把两个和的形式错位相减.③整理结果形式.变式训练2(2014·四川)设等差数列{an}的公差为d,点(an,bn)在函数f(x)=2x的图象上(n∈N*).(1)若a1=-2,点(a8,4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn;(2)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2-,求数列{}的前n项和Tn.题型三裂项相消法求和例3在公差不为0的等差数列{an}中,a1,a4,a8成等比数列.(1)已知数列{an}的前10项和为45,求数列{an}的通项公式;(2)若bn=,且数列{bn}的前n项和为Tn,若Tn=-,求数列{an}的公差.点评(1)裂项相消法:把数列和式中的各项分别裂开后,消去一部分从而计算和的方法,适用于求通项为的前n项和,其中{an}若为等差数列,则=·(-).其余还有公式法求和等.(2)利用裂项相消法求和时,应注意抵消后并不一定只剩第一项和最后一项,也可能前面剩两项,后面也剩两项.变式训练3(2014·大纲全国)等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且Sn≤S4.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.高考题型精练1.(2015·浙江)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>02.(2014·课标全国Ⅱ)等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn等于()A.n(n+1)B.n(n-1)C.D.3.若数列{an}的通项公式为an=,则其前n项和Sn为()A.1-B.--C.--D.--4.已知数列1,3,5,7,…,则其前n项和Sn为()A.n2+1-B.n2+2-C.n2+1-D.n2+2-5.设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于()A.3B.4C.5D.66.已知数列{an}:,+,++,…,+++…+,…,若bn=,那么数列{bn}的前n项和Sn为()A.B.C.D.7.在等比数列{an}中,a1=3,a4=81,若数列{bn}满足bn=log3an,则数列的前n项和Sn=________.8.数列{an}满足an+1+(-1)nan=2n-1,则{an}的前60项和为________.9.(2015·天津模拟)在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S=an.(1)求Sn的表达式;(2)设bn=,求{bn}的前n项和Tn.10.(2014·课标全国Ⅰ)已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{an}的通项公式;(2)求数列{}的前n项和.11.(2015·天津)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列.(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.12.(2015·安徽)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(1)求数列{xn}的通项公式;(2)记Tn=xx…x,证明:Tn≥.答案精析第24练数列求和问题常考题型精析例1解(1)当a1=3时,不合题意;当a1=2时,...