电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(浙江专用)新高考数学一轮复习 第九章 平面解析几何 6 第6讲 双曲线高效演练分层突破-人教版高三全册数学试题VIP免费

(浙江专用)新高考数学一轮复习 第九章 平面解析几何 6 第6讲 双曲线高效演练分层突破-人教版高三全册数学试题_第1页
1/5
(浙江专用)新高考数学一轮复习 第九章 平面解析几何 6 第6讲 双曲线高效演练分层突破-人教版高三全册数学试题_第2页
2/5
(浙江专用)新高考数学一轮复习 第九章 平面解析几何 6 第6讲 双曲线高效演练分层突破-人教版高三全册数学试题_第3页
3/5
第6讲双曲线[基础题组练]1.若双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±2xB.y=±xC.y=±xD.y=±x解析:选B.由条件e=,即=,得==1+=3,所以=±,所以双曲线的渐近线方程为y=±x.故选B.2.已知双曲线-=1(a>0,b>0)的一条渐近线为y=kx(k>0),离心率e=k,则双曲线的方程为()A.-=1B.-=1C.-=1D.-=1解析:选C.由已知得所以a2=4b2.所以双曲线的方程为-=1.3.(2020·杭州学军中学高三质检)双曲线M:x2-=1的左、右焦点分别为F1,F2,记|F1F2|=2c,以坐标原点O为圆心,c为半径的圆与曲线M在第一象限的交点为P,若|PF1|=c+2,则点P的横坐标为()A.B.C.D.解析:选A.由点P在双曲线的第一象限可得|PF1|-|PF2|=2,则|PF2|=|PF1|-2=c,又|OP|=c,∠F1PF2=90°,由勾股定理可得(c+2)2+c2=(2c)2,解得c=1+.易知△POF2为等边三角形,则xP==,选项A正确.4.(2020·杭州中学高三月考)已知F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,若F2关于渐近线的对称点恰落在以F1为圆心,OF1为半径的圆上,则双曲线C的离心率为()A.B.3C.D.2解析:选D.由题意,F1(-c,0),F2(c,0),一条渐近线方程为y=x,则F2到渐近线的距离为=b.设F2关于渐近线的对称点为M,F2M与渐近线交于点A,所以|MF2|=2b,A为F2M的中点,又O是F1F2的中点,所以OA∥F1M,所以∠F1MF2为直角,所以△MF1F2为直角三角形,所以由勾股定理得4c2=c2+4b2,所以3c2=4(c2-a2),所以c2=4a2,所以c=2a,所以e=2.故选D.5.已知F是双曲线C:x2-=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.解析:选D.法一:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C的方程,得4-=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP∥x轴,又PF⊥x轴,1所以AP⊥PF,所以S△APF=|PF|·|AP|=×3×1=.故选D.法二:由题可知,双曲线的右焦点为F(2,0),当x=2时,代入双曲线C的方程,得4-=1,解得y=±3,不妨取点P(2,3),因为点A(1,3),所以AP=(1,0),PF=(0,-3),所以AP·PF=0,所以AP⊥PF,所以S△APF=|PF|·|AP|=×3×1=.故选D.6.(2020·浙江高中学科基础测试)已知双曲线-=1(a>0,b>0)与抛物线y2=20x有一个公共的焦点F,且两曲线的一个交点为P,若|PF|=17,则双曲线的离心率为()A.B.C.D.解析:选B.由题意知F(5,0),不妨设P点在x轴的上方,由|PF|=17知点P的横坐标为17-5=12,则其纵坐标为=4,设双曲线的另一个焦点为F1(-5,0),则|PF1|==23,所以2a=|PF1|-|PF|=23-17=6,所以a=3,所以e==,故选B.7.(2020·宁波市余姚中学高三期中)已知曲线+=1,当曲线表示焦点在y轴上的椭圆时k的取值范围是________;当曲线表示双曲线时k的取值范围是________.解析:当曲线表示焦点在y轴上的椭圆时,k2-k>2,所以k<-1或k>2;当曲线表示双曲线时,k2-k<0,所以0<k<1.答案:k<-1或k>20<k<18.(2020·金华十校联考)已知l是双曲线C:-=1的一条渐近线,P是l上的一点,F1,F2是C的两个焦点,若PF1·PF2=0,则P到x轴的距离为________.解析:F1(-,0),F2(,0),不妨设l的方程为y=x,则可设P(x0,x0),由PF1·PF2=(--x0,-x0)·(-x0,-x0)=3x-6=0,得x0=±,故P到x轴的距离为|x0|=2.答案:29.(2020·瑞安四校联考)设双曲线-=1(a>0,b>0)的两条渐近线与直线x=分别交于A,B两点,F为该双曲线的右焦点.若60°<∠AFB<90°,则该双曲线的离心率的取值范围是________.解析:双曲线-=1的两条渐近线方程为y=±x,x=时,y=±,不妨设A,B,因为60°<∠AFB<90°,所以

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(浙江专用)新高考数学一轮复习 第九章 平面解析几何 6 第6讲 双曲线高效演练分层突破-人教版高三全册数学试题

远洋启航书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群