九年级数学第二十二章第3节二次根式的加减法华东师大版【本讲教育信息】一.教学内容:22.3二次根式的加减法二.重点、难点:1.重点:(1)了解同类二次根式的概念,掌握二次根式的加减运算;(2)能进行二次根式的混合运算.2.难点:(1)能结合乘法公式和因式分解的方法进行二次根式的混合运算.(2)能够运用二次根式的混合运算解决一些简单的实际问题.三.知识梳理:1.同类二次根式几个二次根式经过化简之后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式。如,,所以和是同类二次根式。说明:(1)判断同类二次根式的方法:①首先将不是最简形式的二次根式化为最简二次根式;②再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。合并同类二次根式与合并同类项类似,理论依据都是逆用乘法对加法的分配律,合并同类二次根式,只是把它们的系数相加,根指数和被开方数都不变。2.二次根式的加减法二次根式的加减实质上就是合并同类二次根式,它与合并同类项类似。如4+3-5=(4+3-5)。必须注意不是同类二次根式的不能合并,如+≠。二次根式的加减一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式。需要注意的是:①进行二次根式的加减运算时,过去在学习整式的加减运算中的交换律,结合律及去括号,添括号法则仍然适用;②二次根式的加减运算结果应写成最简结果或几个非同类二次根式的和。3.二次根式的混合运算(1)二次根式的混合运算与整式的混合运算类似。其运算顺序是:先乘方开方,再乘除,最后加减,有括号的先算括号里面的(或先去括号再计算)。(2)在二次根式混合运算的过程中,每个二次根式可以看做一个“单项式”,几个被开方数不同的二次根式的和可以看做“多项式”,故二次根式的运算可以看做整式的运算。(3)实数运算中的运算律,运算法则及乘法公式在二次根式的运算中仍然适用。【典型例题】例1.把下列各式化成最简二次根式:(1);(2);(3);(4);(5)。分析:化简二次根式的一般步骤:(1)把被开方数(式)分解质因数(式),化为积的形式;(2)把根号内能开得尽方的因数(或式)移到根号外;(3)化去根号内的分母.有带分数要化成假分数,有小数化成分数。解:.37949945)1(33aaaa.22222)2(2222xxxxxxxxxxxxx.52522020)3(322222522522zzxyzzzzzyxzyxzyx.)ba(3ab52)ba(3ab104)ba(ba10048)baba(48.0)4(223223(5)例2.下列二次根式中,哪些是同类二次根式?.yx31,33x,xy323,yx2x,3,16111,75,3123分析:先化二次根式为最简二次根式.最简二次根式只要被开方数相同,就是同类二次根式,与根号外面的因式无关。解:,222,343162716111,353575,3323122xyyxyyyxxyxx例3.已知最简根式、是同类根式,求代数式的值。分析:同类根式必须同时满足以下条件:①为最简根式;②根指数相同;③被开方数相同。同类二次根式概念为本题提供了求出、的条件,从而最终求出代数式的值。解:因为最简根式、是同类根式,.6234,423bababa且所以.ba,b,a.baba,ba011111162344232001200220012002解得由例4.计算:;405214551551252021)1(;98173118134)2();1()3(33abbbab).0()4(322244yxyxyxyyxyx分析:先化简二次根式,再合并同类二次根式。解:.21521215)29311(529535215405214551551252021)1(解.23232)2161(3)3132(22133126133298173118134)2(.ab)ab1a(b)b1(abab1bbabab)ab1b(bab)3(33.)()()()0()4(2222222224222324224322244yxyxyyxyxyxyyxyxyxyxyxyyxyyxxyxyxyyyxxyxyxyxyyxyx例5.计算:).32(312)4();323)(232)(3(;)3)(2();65153(1021)1(33xyxyxyyx分析:这里可以把二次根式看成是一个“单...