专题19概率、随机变量及其分布列【命题热点突破一】古典概型与几何概型例1、【2016高考新课标1卷】某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()(A)(B)(C)(D)【答案】B【变式探究】三位学生两位老师站成一排,则老师站在一起的概率为________.【答案】【解析】三位学生两位老师站成一排,有A=120(种)站法,老师站在一起,共有AA=48(种)站法,故老师站在一起的概率为=.【特别提醒】求古典概型的概率的关键是计算基本事件的个数和所求的随机事件含有的基本事件的个数,在计算时要注意不要重复也不要遗漏【变式探究】已知圆O:x2+y2=12,直线l:4x+3y=25,则圆O上的点到直线l的距离小于2的概率为________.【答案】【解析】圆心O到直线l的距离为=5.设与直线l平行且距离为2,并与圆O相交的直线为l′,如图所示,此时圆心O到直线l′的距离为3,则直线l′截圆O所得的劣弧上的点到直线l的距离小于2,圆O的半径为2,所以直线l′截圆O所得的劣弧所对的圆心角为60°,所以所求的概率为=.【特别提醒】与角度相关的几何概型问题一般用直接法,或转化为与线段长度、面积有关的几何概型问题.计算与线段长度有关的几何概型的方法是:求出基本事件对应的线段长度、随机事件对应的线段长度,随机事件对应的线段长度与基本事件对应的线段长度之比即为所求.【举一反三】如图所示,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短直角边长为3,向大正方形内抛撒一颗黄豆(假设黄豆不落在线上),则黄豆恰好落在小正方形内的概率为()A.B.C.D.【答案】B【特别提醒】计算与面积相关的几何概型的方法:算出基本事件对应图形的面积和随机事件对应图形的面积,随机事件对应图形的面积与基本事件对应图形的面积之比即为所求.【变式探究】某高二学生练习投篮,每次投篮命中率约为30%,现采用随机模拟的方法估计该生投篮命中的概率:选用计算器产生0到9之间的整数值的随机数,指定0,1,2表示命中,4,5,6,7,8,9表示不命中,再以每3个随机数为一组,代表3次投篮的结果.经随机模拟产生了如下随机数:807956191925271932813458569683431257393027556488730113527989据此估计该学生3次投篮恰有2次命中的概率为()A.0.15B.0.25C.0.2D.0.18【答案】C【解析】随机数共有20组,其中表示3次投篮恰有2次命中的有191,271,027,113,共4组,所以所求概率约为=0.2.【特别提醒】每次命中率约为30%,3次投篮命中2次的概率,可以看作3次独立重复试验恰好成功2次的概率,直接计算为C×0.32×0.7=0.189,与随机模拟方法求得的概率具有差异.随机模拟的方法求得的概率具有随机性,两次随机模拟求得的概率值可能是不同的.【命题热点突破二】相互独立事件和独立重复试验例2、某项比赛规则是:甲、乙两队先进行个人赛,每支参赛队中成绩的前三名队员再代表本队进行团体赛,团体赛是在两队名次相同的队员之间进行,且三场比赛同时进行.根据以往比赛统计:两名队员中个人赛成绩高的队员在各场胜的概率为,负的概率为,且各场比赛互不影响.已知甲、乙两队各有5名队员,这10名队员的个人赛成绩如图所示.(1)计算两队在个人赛中成绩的均值和方差;(2)求甲队在团体赛中至少有2名队员获胜的概率.【特别提醒】在做涉及相互独立事件的概率题时,首先把所求的随机事件分拆成若干个互斥事件的和,其次将分拆后的互斥事件分拆为若干个相互独立事件的乘积,如果某些相互独立事件符合独立重复试验的特点,那么就用独立重复试验的概率计算公式解答.【变式探究】已知2件次品和3件正品混放在一起,现需要通过检验将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事...