【状元之路】2016届高考数学理一轮总复习第10章计数原理、概率、随机变量及其分布列9练习(含解析)新人教A版1.[2014·陕西]设样本数据x1,x2,…,x10的均值和方差分别为1和4,若yi=xi+a(a为非零常数,i=1,2,…,10),则y1,y2,…,y10的均值和方差分别为()A.1+a,4B.1+a,4+aC.1,4D.1,4+a解析:给每个数据都加上常数a后,均值也增加a,方差不变,故选A.答案:A2.[2014·浙江]已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为pi(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)解析:方法一(特值法)取m=n=3进行计算、比较即可.方法二(标准解法)从乙盒中取1个球时,取出的红球的个数记为ξ,则ξ的所有可能取值为0,1,则P(ξ=0)==P(ξ1=1),P(ξ=1)==P(ξ1=2),所以E(ξ1)=1·P(ξ1=1)+2·P(ξ1=2)=+1,所以p1==;从乙盒中取2个球时,取出的红球的个数记为η,则η的所有可能取值为0,1,2,则P(η=0)==P(ξ2=1),P(η=1)==P(ξ2=2),P(η=2)==P(ξ2=3),所以E(ξ2)=1·P(ξ2=1)+2P(ξ2=2)+3P(ξ2=3)=+1,所以p2==,所以p1>p2,E(ξ1)<E(ξ2),故选A.答案:A3.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X,则X的均值E(X)=()A.B.C.D.解析:由题意可知涂漆面数X的可能取值为0,1,2,3.由于P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,故E(X)=0×+1×+2×+3×==.答案:B4.[2014·浙江]随机变量ξ的取值为0,1,2.若P(ξ=0)=,E(ξ)=1,则D(ξ)=__________.解析:由题意设P(ξ=1)=p,ξ的分布列如下:ξ012Pp-p由E(ξ)=1,可得p=,所以D(ξ)=12×+02×+12×=.答案:5.[2014·四川]一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?(3)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因.解析:(1)X可能的取值为:10,20,100,-200.根据题意,有P(X=10)=C×1×2=,P(X=20)=C×2×1=,P(X=100)=C×3×0=,P(X=-200)=C×0×3=.所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=.所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-3=1-=.因此,玩三盘游戏至少有一盘出现音乐的概率是.(3)X的数学期望是E(X)=10×+20×+100×-200×=-.这表明,获得分数X的均值为负,因此,多次游戏之后分数减少的可能性更大.