第5讲直线、平面垂直的判定及其性质[基础题组练]1.在正方体ABCDA1B1C1D1中,点E为棱CD的中点,则()A.A1E⊥DC1B.A1E⊥BDC.A1E⊥BC1D.A1E⊥AC解析:选C.由正方体的性质,得A1B1⊥BC1,B1C⊥BC1,所以BC1⊥平面A1B1CD,又A1E⊂平面A1B1CD,所以A1E⊥BC1,故选C.2.如图,O为正方体ABCDA1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是()A.A1DB.AA1C.A1D1D.A1C1解析:选D.由题易知A1C1⊥平面BB1D1D.又B1O⊂平面BB1D1D,所以A1C1⊥B1O.3.(2020·温州中学高三模考)如图,在三棱锥DABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE解析:选C.因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.4.(2020·浙江省名校协作体高三联考)已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则直线AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.解析:选A.如图所示,取A1C1的中点D,连接AD,B1D,则可知B1D⊥平面ACC1A1,所以∠DAB1即为直线AB1与平面ACC1A1所成的角,不妨设正三棱柱的棱长为2,所以在Rt△AB1D中,sin∠DAB1===,故选A.5.(2020·浙江省高中学科基础测试)在四棱锥PABCD中,底面ABCD是直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点,设=m,则“0β.故选B.7.如图,在△ABC中,∠ACB=90°,AB=8,∠ABC=60°,PC⊥平面ABC,PC=4,M是AB上的一个动点,则PM的最小值为________.解析:作CH⊥AB于H,连接PH.因为PC⊥平面ABC,所以PH⊥AB,PH为PM的最小值,等于2.答案:28.如图所示,在四面体ABCD中,AB,BC,CD两两垂直,且BC=CD=1.直线BD与平面ACD所成的角为30°,则线段AB的长度为________.解析:如图,过点B作BH⊥AC,垂足为点H,连接DH.因为CD⊥AB,CD⊥BC,所以平面ACD⊥平面ABC,所以BH⊥平面ACD.所以∠BDH为直线BD与平面ACD所成的角.所以∠BDH=30°,在Rt△BDH中,BD=,所以BH=.又因为在Rt△BHC中,BC=1,所以∠BCH=45°.所以在Rt△ABC中,AB=BC=1.答案:19.(2020·台州市书生中学月考)如图,在四棱锥PABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,PD=AD=DC=2AB,则异面直线PC与AB所成角的大小为________;直线PB与平面PDC所成角的正弦值为________.解析:因为AB∥CD,所以∠PCD即为异面直线PC与AB所成的角,显然三角形PDC为等腰直角三角形,所以∠PCD=.设AB=1,则可计算得,PB=3,而点B到平面PDC的距离d等于AD的长为2,所以直线PB与平面PDC所成角的正弦值为=.答案:10.(2020·浙江名校新高考联盟联考)如图,已知正四面体DABC,P为线段AB上的动点(端点除外),则二面角DPCB的平面角的余弦值的取值范围是________.解析:当点P从A运动到B,二面角DPCB的平面角逐渐增大,二面角DPCB的平面角最小趋近于二面角DACB的平面角,最大趋近于二面角D-BCA的平面角的补角,故余弦值的取值范围是.2答案:11....