山东省临沂市罗庄区2018-2019学年高二数学下学期期中试题(含解析)一、选择题1.复数(是虚数单位)在复平面内所对应点的坐标为()A.B.C.D.【答案】D【解析】试题分析:,∴复平面内所对应点的坐标为,故选D.考点:复数的运算.2.在的展开式中,含的正整数次幂的项共有()A.4项B.3项C.2项D.1项【答案】B【解析】的展开式的通项为为整数,项,即,故选B.【方法点晴】本题主要考查二项展开式定理的通项与系数,属于中档题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A.B.C.D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.若的展开式中所有二项式系数的之和为,则展开式中的常数项是()A.B.C.D.【答案】B【解析】【分析】由二项式定理及展开式通项公式得:,由的展开式的通项为,令得,即可求得展开式中的常数项.【详解】解:由的展开式中所有二项式系数的之和为32,得,解得,由的展开式的通项为,令得,即该展开式中的常数项是,故选:B.【点睛】本题考查了二项式定理及展开式通项公式,属于基础题.5.函数有()A.极大值,极小值B.极大值,极小值C.极大值,无极小值D.极小值,无极大值【答案】C【解析】【分析】利用导函数的正负可确定原函数的单调性,由单调性可知当时,函数取极大值,无极小值;代入可求得极大值,进而得到结果.【详解】当时,,函数单调递增;当时,,函数单调递减当时,函数取极大值,极大值为;无极小值故选:【点睛】本题考查函数极值的求解问题,关键是能够根据导函数的符号准确判断出原函数的单调性,属于基础题.6.设随机变量,,若,则的值为A.B.C.D.【答案】B【解析】【分析】根据二项分布的期望公式求出,再根据4次独立重复试验的概率公式计算可得.【详解】解:,,,,故选:B.【点睛】本题考查了离散型随机变量的期望与方程,属于基础题.7.设,其中为虚数单位,,是实数,则()A.1B.C.D.【答案】D【解析】,,是实数,故选D.8.素数指整数在一个大于的自然数中,除了和此整数自身外,没法被其他自然数整除的数.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于的偶数可以表示为两个素数的和”,如.在不超过的素数中,随机选取两个不同的数,其和等于的概率是()A.B.C.D.【答案】C【解析】【分析】利用列举法先求出不超过30的所有素数,利用古典概型的概率公式进行计算即可.【详解】解:在不超过30的素数中有,2,3,5,7,11,13,17,19,23,29共10个,从中选2个不同的数有种,和等于30的有,,,共3种,则对应的概率,故选:C.【点睛】本题主要考查古典概型的概率的计算,求出不超过30的素数是解决本题的关键,属于基础题.9.已知随机变量服从正态分布,且,则().A.B.C.D.【答案】B【解析】 随机变量服从正态分布,,即对称轴是,,∴,∴,∴.故选.10.编号为的位同学随意入座编号为的个座位,每位同学坐一个座位,设与座位编号相同的学生个数是,则的方差为()A.B.C.D.【答案】D【解析】【分析】的所有可能取值为0,1,3,求出概率后,再求出期望和方差.【详解】解:的所有可能取值为0,1,3,,,,.故选:D.【点睛】本题考查了离散型随机变量的期望与方差,属于基础题.11.10张奖券中含有张中奖的奖券,每人购买张...