电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

柴俊-丁大公-陈咸平--等-编-科学出版社-华东师范大学-高等数学作业集-答案Ch-11-Infinite-seriesVIP免费

柴俊-丁大公-陈咸平--等-编-科学出版社-华东师范大学-高等数学作业集-答案Ch-11-Infinite-series_第1页
1/17
柴俊-丁大公-陈咸平--等-编-科学出版社-华东师范大学-高等数学作业集-答案Ch-11-Infinite-series_第2页
2/17
柴俊-丁大公-陈咸平--等-编-科学出版社-华东师范大学-高等数学作业集-答案Ch-11-Infinite-series_第3页
3/17
第11章无穷级数参考解答1、根据级数收敛与发散的定义判别下列级数的敛散性:(1)解:,故原级数收敛。(2)解:,故原级数发散。2、用比较审敛法判别下列级数的敛散性:(1)解:,而级数收敛,故原级数收敛。(2)解:,而级数发散,故原级数发散。(3)1解:,而级数收敛,故原级数收敛。(4)解:,而级数收敛,故原级数收敛。(利用极限,或)(5)解:,而级数发散,故原级数发散。3、用比值审敛法判别下列级数的敛散性:(1)解:,故原级数收敛。(2)解:,故原级数发散。2(3)解:,故原级数收敛。(4)解:,故原级数收敛。(利用极限)4、用根值审敛法判别下列级数的敛散性:(1)解:,故原级数收敛。(2)解:,故原级数收敛。(3)解:,故原级数收敛。5、判别下列级数是否收敛,若收敛,是绝对收敛还是条件收敛:(1)3解:,且,故原级数为Leibniz型交错级数。但因,而发散,故发散。因此,原级数条件收敛。(2)解:,,且,故原级数为Leibniz型交错级数。但因,而收敛,故收敛。因此,原级数绝对收敛。(3)(即)解:,且,故原级数为Leibniz型交错级数。但因发散,故原级数条件收敛。(4)解:考察函数,因时,,故函数4在上单调下降。由此可知,当时,,且易知,故原级数为Leibniz型交错级数。但因,而发散,故发散。因此,原级数条件收敛。6、求下列幂级数的收敛区间:(1)解:,故得。时,级数为;时,级数为,上述级数均收敛,故原幂级数的收敛区间为。(2)解:,故得。时,级数为,5此系Leibniz型交错级数;时,级数为,此系调和级数。故原幂级数的收敛区间为。(3)解:原幂级数即为,此为缺项幂级数。因,故由,得。时,级数均成为,发散。故原幂级数的收敛区间为。(4)解:,故得。时,级数为,发散;时,级数为,系Leibniz型交错级数。故原幂级数的收敛区间为。(5)6解:,故得,原幂级数的收敛区间为。7、利用逐项求导或逐项积分求下列幂级数的和函数:(1)解:,故得。时,相应的级数均发散(一般项不趋于零)。故幂级数的收敛区间为。设,则,故得,。(2)解:,故得。时,相应的级数均发散。故幂级数的收敛区间为。设,则当时,有。当时,,但,故得,于是7得,。因此,所求幂级数之和函数为(3)解:,故得。时,相应的级数为,因,而发散,故发散。时,相应的级数为,为Leibniz型交错级数。故幂级数的收敛区间为。设,则当时,有。当时,其中,。因,故得8,于是因此,所求幂级数之和函数为8、将下列函数展开成x的幂级数,并求展开式成立的区间:(1)()(2)()(3)()(4)()(5)9()(6)解:设,则()()()(7)解:,(8)解:,9、将下列函数展开成的幂级数,并求展开式成立的区间:(1)(2)10()10、求级数的和。解:先求幂级数的和函数。易知其收敛区间为。设则当时,其中,。因,故得,于是11所求级数的和即为。11、设,试将展成x的幂级数,并求级数之和。解:当时,因,故得。12-13、略。14、设,,其中12(),求解:因为所给Fourier级数为余弦级数,故先将偶延拓到上,即然后将延拓成这个实数轴上的以2为周期的函数。于是,根据Dirichlet收敛条件,得注:周期的大小可从公式看出。15-16、略。(第15题课上已介绍)17、判别下列级数之敛散性:(1)解:因(Taylor公式)13,故所求极限为1,故原级数收敛。(2)解:1,但级数收敛,故原级数收敛。2,但级数发散,故原级数发散。18、设收敛,且,证明收敛。证明:因收敛,故部分和数列收敛,即存在;又,故因此,极限存在,从而知收敛。19、设在点的某一邻域内具有二阶连续导数,且,证明级数14绝对收敛。证明:因,在点连续,故知。于是故由Taylor公式,(其中),从而得。于是,,但级数收敛,故原级数绝对收敛。20、设幂级数的收敛半径为3,求幂级数的收敛区间。解:故所求收敛区间为。21、将函数展成x的幂级数,并指明收敛域,利用展开式求级数15的和。解:,另一方面,,故得令,得,从而得。22、设,试将它展开成以2为周期的Fourier级数,并用它来求。解:,,,故所求Fourier级数为16令,得,即,故得。如有错误,敬请指正;如有疑问,欢迎讨论!17

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

柴俊-丁大公-陈咸平--等-编-科学出版社-华东师范大学-高等数学作业集-答案Ch-11-Infinite-series

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部