1花坪民族中学教师集体备课八年级数学集体备课组成员:杨学志肖金戈杨兴权付志海付仁翠谭华授课时间:2015年3月教学内容二次根式(1)教学课时共课时教学目标1.理解二次根式的概念,并利用(a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.教学重点重点:形如(a≥0)的式子叫做二次根式的概念;教学难点利用“(a≥0)”解决具体问题是否使用多媒体教学是多媒体教学链接链接课件集体备课内容个人二次修案学生活动一、创设情境问题:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=3,所以所求点的坐标(3,3).二、探索新知很明显3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如a(a≥0)的式子叫做二次根式,“”称为二次根号.(学生活动)议一议:1.-1有算术平方根吗?2.0的算术平方根是多少?3.当a<0,a有意义吗?老师点评:(略)例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x(x>0)、0、42、-2、a、xy(x≥0,y≥0).分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:2、x(x>0)、0、-2、xy(x≥0,y≥0);不是二次根式的有:33、1x、42、a.例2.当x是多少时,31x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等2于0,所以3x-1≥0,31x才能有意义.解:由3x-1≥0,得:x≥13当x≥13时,31x在实数范围内有意义.三、巩固练习教材P3练习1、2、3.四、应用拓展例3.当x是多少时,23x+11x在实数范围内有意义?分析:要使23x+11x在实数范围内有意义,必须同时满足23x中的≥0和11x中的x+1≠0.解:依题意,得23010xx由①得:x≥-32由②得:x≠-1当x≥-32且x≠-1时,23x+11x在实数范围内有意义.例4(1)已知y=2x+2x+5,求xy的值.(答案:2)(2)若1a+1b=0,求a2004+b2004的值.(答案:25)五、归纳小结(学生活动,老师点评)本节课要掌握:1.形如a(a≥0)的式子叫做二次根式,“”称为二次根号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业课后作业:《同步训练》教学反思3花坪民族中学教师集体备课八年级数学集体备课组成员:杨学志肖金戈杨兴权付志海付仁翠谭华授课时间:2015年3月教学内容二次根式(2)教学课时共课时教学目标1、理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.教学重点.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用教学难点难点、:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).是否使用多媒体教学多媒体教学链接链接课件集体备课内容个人二次修案学生活动一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,a叫什么?当a<0时,a有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出a(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______;(13)2=______;(72)2=_______;(0)2=_______.老师点评:4是4的算术平方根,根据算术平方根的意4义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(9)2=9,(3)2=3,(13)2=13,(72)2=72,(0)2=0,所以(a)2=a(a≥0)例1计算1.(32)22.(35)23.(56)24.(72)2分析:我们可以直接利用(a)2=a(a≥0)的结论解题.解:(32)2=32,(35)2=32·(5)2=32·5=45,(56)2=56,(72)2=22(7)724.三、巩固练习计算下列各式的值:(18)2(23)2(94)2(0)2(478)222(35)(53)四、应用拓展例2计算1.(1x)2(x≥0)2.(2a)23.(221aa)24.(24...