第2课时用配方法求解较复杂的一元二次方程教学目标1.会用配方法解二次项系数不为1的一元二次方程;(重点)2.能够熟练地、灵活地应用配方法解一元二次方程.(难点)教学过程一、情景导入某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间?二、合作探究探究点一:用配方法解二次项系数不为1的一元二次方程用配方法解方程:3x2+18x+24=0.:方程两边同时除以3,得x2+6x+8=0.移项,得x2+6x=-8,配方,得(x+3)2=1.开平方,得x+3=±1.解得x1=-2,x2=-4.结论在使用配方法过程中若二次项的系数不为1时,需要将二次项系数化为1后,再根据配方法步骤进行求解.易错提醒:用配方法解一元二次方程时,易出现以下错误:(1)方程一边忘记加常数项;(2)忘记将二次项系数化为1;(3)在二次项系数化为1时,常数项忘记除以二次项系数;(4)配方时,只在一边加上一次项系数一半的平方例2解方程:3x2+8x-3=0.解:两边同除以3,得x2+x-1=0.配方,得x2+x+()2-()2-1=0,(x+)2-1=0.移项,得x+=±,即x+=+或x+=-.所以x1=,x2=-3.方法总结:这类题目主要是配方法和非负数性质的综合应用,通过配方把等式转化为两个数的平方和等于0的形式是解题的关键.【类型三】利用配方法解决一些简单的实际问题例3:一个小球从地面上以15m/s的初速度竖直向上弹出,它在空中的高度h(m)与时间t(s)满足关系:834343832594353435353434313h=15t-5t2.小球何时能达到10m高?解:将h=10代入方程式中.15t-5t2=10.两边同时除以-5,得t2-3t=-2,配方,得t2-3t+()2=()2-2,(t-)2=移项,得(t-)2=即t-=,或t-=.所以t1=2,t2=1.即在1s或2s时,小球可达10m高.方法总结①二次项系数要化为1;②在二次项系数化为1时,常数项也要除以二次项系数;③配方时,两边同时加上一次项系数一半的平方.三、板书设计用配方法解二次项系数不为1的一元二次方程的步骤:(1)把原方程化为一般形式;(2)二次项系数化为1,方程两边都除以二次项系数;(3)移项,把常数项移到右边,使方程左边只含二次项和一次项;(4)配方,方程两边都加上一次项系数一半的平方;(5)用直接开平方法解方程.教学反思通过对比用配方法解二次项系数是1的一元二次方程,发现解二次项系数不是1的一元二次方程的方法,经历从简单到复杂的过程,对配方法全面认识.培养学生发现问题的能力通过学生亲自解方程的感受与经验,总结成文,帮助学生养成系统整理知识的学习习惯.32321432±12,32−12,12,3232