3.2.2复数的乘法课后训练1.若x,y∈R,且(1+i)x+(1-i)y=2,则xy等于().A.1B.2C.-2D.-12.已知a,b∈R,则(a+bi)(a-bi)(-a+bi)(-a-bi)等于().A.(a2+b2)2B.(a2-b2)2C.a2+b2D.a2-b23.若复数z1=1+i,z2=3-i,则z1·z2=().A.4+2iB.2+iC.2+2iD.3+i4.i是虚数单位,计算i+i2+i3等于().A.-1B.1C.-iD.i5.1+2i+3i2+…+2005i2004的值是().A.-1000-1000iB.-1002-1002iC.1003-1002iD.1005-1000i6.(1+i)2008+(1-i)2008的值是________.7.已知(a-i)2=2i,则实数a=__________.8.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序数对(a,b)可以是__________(写出一个有序实数对即可).9.设z=2i(1+i)3(a-i)2,且z在复平面内对应的点与原点的距离为12,则实数a=__________.10.已知z=(1-i)3,求zz.1参考答案1.答案:A由题意,(x+y)+(x-y)i=2,∴2,0,xyxy∴x=y=1,∴xy=1.2.答案:A(a+bi)(a-bi)=a2+b2,(-a+bi)(-a-bi)=(-a)2+b2=a2+b2,∴(a+bi)(a-bi)(-a+bi)(-a-bi)=(a2+b2)2.3.答案:Az1·z2=(1+i)(3-i)=3-i+3i-i2=3+2i+1=4+2i.4.答案:Ai+i2+i3=i-1-i=-1.5.答案:C6.答案:21005原式=[(1+i)2]1004+[(1-i)2]1004=(2i)1004+(-2i)1004=21004i1004+21004i1004=21004+21004=21005.7.答案:-1由题意,a2-1-2ai=2i.∴210,22.aa∴a=-1.8.答案:(2,1)∵z2-4bz=(a+bi)(a-4b+bi)=a2-4ab+abi+abi-4b2i-b2=a2-4ab-b2+(2ab-4b2)i是实数,∴2ab-4b2=0.∴2b(a-2b)=0.∵b≠0,∴a=2b.∴z可以为(2,1)或(4,2)等.9.答案:±2由题意,得|z|=12,又|z|=|2i(1+i)3(a-i)2|=|2i|·|1+i|3·|a-i|2=22222(1)=12a.所以a2+1=3,即a=±2.10.答案:分析:若先求z再计算z·z,则运算较繁.根据复数其与共轭复数的性质求解则比较简单.解:z·z=|z|2=|(1-i)3|2=|1-i|6=8.2