电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用版)高考数学一轮复习 第八章 立体几何 课时达标检测(三十五)直线、平面平行的判定与性质 文-人教版高三全册数学试题VIP免费

(全国通用版)高考数学一轮复习 第八章 立体几何 课时达标检测(三十五)直线、平面平行的判定与性质 文-人教版高三全册数学试题_第1页
1/4
(全国通用版)高考数学一轮复习 第八章 立体几何 课时达标检测(三十五)直线、平面平行的判定与性质 文-人教版高三全册数学试题_第2页
2/4
(全国通用版)高考数学一轮复习 第八章 立体几何 课时达标检测(三十五)直线、平面平行的判定与性质 文-人教版高三全册数学试题_第3页
3/4
课时达标检测(三十五)直线、平面平行的判定与性质小题常考题点——准解快解]1.(2018·河北保定模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1B.2C.3D.4解析:选A命题①l可以在平面α内,是假命题;命题②直线a与平面α可以是相交关系,是假命题;命题③a可以在平面α内,是假命题;命题④是真命题.2.(2018·湖南湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥nB.若m∥α,m⊂β,则α∥βC.若α⊥γ,β⊥γ,则α∥βD.若m⊥α,n⊥α,则m∥n解析:选DA中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.4.(2018·襄阳模拟)如图,在正方体ABCDA1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行解析:选D如图所示,连接AC,C1D,BD,则MN∥BD,而C1C⊥BD,故C1C⊥MN,故A、C正确,D错误,又因为AC⊥BD,所以MN⊥AC,B正确.5.(2018·湖南长郡中学质检)如图所示的三棱柱ABCA1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B在三棱柱ABCA1B1C1中,AB∥A1B1, AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC, 过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.6.已知正方体ABCDA1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④7.如图所示,在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面所在平面中与MN平行的是________________.解析:连接AM并延长,交CD于点E,连接BN,并延长交CD于点F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,连接MN,由==,得MN∥AB.因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD8.如图所示,三棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC1∩B1C=O,连接OD. A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD, 四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1=1.答案:1[大题常考题点——稳解全解]1.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.2.(2018·湖南长沙四校模拟)如图,在四棱锥PABCD中,E是棱PC上一点,且2AE=AC+AP,底面ABCD是边长为2的正方形,△PAD为正三角形,平面ABE与棱PD交于点F,平面PCD与平面PAB交于直线l,且平...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用版)高考数学一轮复习 第八章 立体几何 课时达标检测(三十五)直线、平面平行的判定与性质 文-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部