电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)高考数学大一轮复习 8.8曲线与方程课时作业 理-人教版高三全册数学试题VIP免费

(新课标)高考数学大一轮复习 8.8曲线与方程课时作业 理-人教版高三全册数学试题_第1页
1/5
(新课标)高考数学大一轮复习 8.8曲线与方程课时作业 理-人教版高三全册数学试题_第2页
2/5
(新课标)高考数学大一轮复习 8.8曲线与方程课时作业 理-人教版高三全册数学试题_第3页
3/5
课时作业60曲线与方程一、选择题1.方程(x2-y2-1)=0表示的曲线的大致形状是(图中实线部分)()解析:原方程等价于或x-y-1=0,前者表示等轴双曲线x2-y2=1位于直线x-y-1=0下方的部分,后者为直线x-y-1=0,这两部分合起来即为所求.答案:B2.动点P(x,y)满足5=|3x+4y-11|,则点P的轨迹是()A.椭圆B.双曲线C.抛物线D.直线解析:设定点F(1,2),定直线l:3x+4y-11=0,则|PF|=,点P到直线l的距离d=.由已知得=1,但注意到点F(1,2)恰在直线l上,所以点P的轨迹是直线.选D.答案:D3.已知点A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析: AB的方程为4x-3y+4=0,又|AB|=5,设点C(x,y)由题意可知×5×=10,∴4x-3y-16=0或4x-3y+24=0.答案:B4.设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为()A.-=1B.+=1C.-=1D.+=1解析:M为AQ垂直平分线上一点,则|AM|=|MQ|,∴|MC|+|MA|=|MC|+|MQ|=|CQ|=5,故M的轨迹为椭圆,∴a=,c=1,则b2=a2-c2=,∴椭圆的标准方程为+=1.答案:D5.动点P(x,y)到定点A(3,4)的距离比P到x轴的距离多一个单位长度,则动点P的轨迹方程为()A.x2-6x-10y+24=0B.x2-6x-6y+24=0C.x2-6x-10y+24=0或x2-6x-6y=0D.x2-8x-8y+24=0解析:本题满足条件|PA|=|y|+1,即=|y|+1,当y>0时,整理得x2-6x-10y+24=0;当y≤0时,整理得x2-6x-6y+24=0,变为(x-3)2+15=6y,此方程无轨迹.答案:A6.设P为圆x2+y2=1上的动点,过P作x轴的垂线,垂足为Q,若PM=λMQ(其中λ为正常数),则点M的轨迹为()A.圆B.椭圆C.双曲线D.抛物线解析:设M(x,y),P(x0,y0),则Q(x0,0),由PM=λMQ得(λ>0)∴,由x+y=1,∴x2+(λ+1)2y2=1(λ>0),∴点M的轨迹为椭圆.答案:B二、填空题7.设P是圆x2+y2=100上的动点,点A(8,0),线段AP的垂直平分线交半径OP于M点,则点M的轨迹为________.解析:如图,设M(x,y),由于l是AP的垂直平分线,于是|AM|=|PM|,又由于10=|OP|=|OM|+|PM|=|OM|+|AM|,即|OM|+|AM|=10,也就是说,动点M到O(0,0)及A(8,0)的距离之和是10,故动点M的轨迹是以O(0,0),A(8,0)为焦点,中心在(4,0),长半轴长是5的椭圆.答案:椭圆8.直线+=1与x、y轴交点的中点的轨迹方程是________.解析:设直线+=1与x、y轴交点为A(a,0)、B(0,2-a),A、B中点为M(x,y),则x=,y=1-,消去a,得x+y=1, a≠0,a≠2,∴x≠0,x≠1.答案:x+y=1(x≠0,x≠1)9.P是椭圆+=1上的任意一点,F1、F2是它的两个焦点,O为坐标原点,OQ=PF1+PF2,则动点Q的轨迹方程是________.解析:由OQ=PF1+PF2,又PF1+PF2=PM=2PO=-2OP,设Q(x,y),则OP=-OQ=-(x,y)=,即P点坐标为,又P在椭圆上,则有+=1,即+=1.答案:+=1三、解答题10.已知曲线E:ax2+by2=1(a>0,b>0),经过点M(,0)的直线l与曲线E交于点A,B,且MB=-2MA.若点B的坐标为(0,2),求曲线E的方程.解:设A(x0,y0), B(0,2),M(,0),故MB=(-,2),MA=(x0-,y0).由于MB=-2MA,∴(-,2)=-2(x0-,y0).∴x0=,y0=-1,即A(,-1). A,B都在曲线E上,∴,解得.∴曲线E的方程为x2+=1.11.如图,设P是圆x2+y2=25上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|=|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的长度.解:(1)设M的坐标为(x,y),P的坐标为(xP,yP),由已知得 P在圆上,∴x2+(y)2=25,即轨迹C的方程为+=1.(2)过点(3,0)且斜率为的直线方程为y=(x-3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y=(x-3)代入C的方程,得+=1,即x2-3x-8=0.∴x1=,x2=.∴线段AB的长度为|AB|====.1.在平面直角坐标系xOy中,设点F,直线l:x=-,点P在直线l上移动,R是线段PF与y轴的交点,PQ⊥...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标)高考数学大一轮复习 8.8曲线与方程课时作业 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部