电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)高考数学二轮复习 专题能力训练5 导数及其应用 理-人教版高三全册数学试题VIP免费

(新课标)高考数学二轮复习 专题能力训练5 导数及其应用 理-人教版高三全册数学试题_第1页
1/6
(新课标)高考数学二轮复习 专题能力训练5 导数及其应用 理-人教版高三全册数学试题_第2页
2/6
(新课标)高考数学二轮复习 专题能力训练5 导数及其应用 理-人教版高三全册数学试题_第3页
3/6
专题能力训练5导数及其应用(时间:60分钟满分:100分)一、选择题(本大题共8小题,每小题5分,共40分)1.已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.-2B.2C.-D.2.已知函数f(x)=lnx+ln(2-x),则()A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称3.已知a≥0,函数f(x)=(x2-2ax)ex.若f(x)在[-1,1]上是单调递减函数,则a的取值范围是()A.02,则f(x)>2x+4的解集为()A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)5.(2017浙江金丽衢十二校模拟)如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)=f(x)-kx有()A.1个极大值点,2个极小值点B.2个极大值点,1个极小值点C.3个极大值点,无极小值点D.3个极小值点,无极大值点6.将函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向旋转角θ(θ∈(0,α]),得到曲线C,若对于每一个旋转角,曲线C都仍然是一个函数的图象,则α的最大值为()A.πB.C.D.7.已知函数f(x)=x+ex-a,g(x)=ln(x+2)-4ea-x,其中e为自然对数的底数,若存在实数x0,使f(x0)-g(x0)=3成立,则实数a的值为()A.-ln2-1B.ln2-1C.-ln2D.ln28.若函数f(x)=lnx与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围是()A.B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)二、填空题(本大题共6小题,每小题5分,共30分)9.若f(x)=x3+3ax2+3(a+2)x+1有极大值和极小值,则a的取值范围为.10.(2017浙江诸暨肇庆三模)已知函数f(x)=x3+ax2+3x-9,若x=-3是函数f(x)的一个极值点,则实数a=.11.设f'(x)是奇函数f(x)(x∈R)的导函数,f(-2)=0,当x>0时,xf'(x)-f(x)>0,则使得f(x)>0成立的x的取值范围是.12.已知函数f(x)=x3-2x+ex-,其中e是自然对数的底数.若f(a-1)+f(2a2)≤0,则实数a的取值范围是.13.已知函数f(x)=若对于∀t∈R,f(t)≤kt恒成立,则实数k的取值范围是.14.设函数f(x)=ax3+bx2+cx+d(a≠0)满足f(1)+f(3)=2f(2),现给出如下结论:①若f(x)是区间(0,1)上的增函数,则f(x)是区间(3,4)上的增函数;②若a·f(1)≥a·f(3),则f(x)有极值;③对任意实数x0,直线y=(c-12a)(x-x0)+f(x0)与曲线y=f(x)有唯一公共点.其中正确的结论为.(填序号)三、解答题(本大题共2小题,共30分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分15分)已知函数f(x)=x3+|x-a|(a∈R).(1)当a=1时,求f(x)在(0,f(0))处的切线方程;(2)当a∈(0,1)时,求f(x)在区间[-1,1]上的最小值(用a表示).16.(本小题满分15分)已知函数f(x)=ax(lnx-1)(a≠0).(1)求函数y=f(x)的单调递增区间;(2)当a>0时,设函数g(x)=x3-f(x),函数h(x)=g'(x),①若h(x)≥0恒成立,求实数a的取值范围;②证明:ln(1×2×3×…×n)2e<12+22+32+…+n2(n∈N*).参考答案专题能力训练5导数及其应用1.A解析由y'=得曲线y=在点(3,2)处的切线斜率为-,又切线与直线ax+y+1=0垂直,则a=-2.故选A.2.C解析f(x)=lnx+ln(2-x)=ln(-x2+2x),x∈(0,2).当x∈(0,1)时,x增大,-x2+2x增大,ln(-x2+2x)增大,当x∈(1,2)时,x增大,-x2+2x减小,ln(-x2+2x)减小,即f(x)在区间(0,1)上单调递增,在区间(1,2)上单调递减,故排除选项A,B;因为f(2-x)=ln(2-x)+ln[2-(2-x)]=ln(2-x)+lnx=f(x),所以函数y=f(x)的图象关于直线x=1对称,故排除选项D.故选C.3.C解析f'(x)=ex[x2+2(1-a)x-2a], f(x)在[-1,1]上单调递减,∴f'(x)≤0在[-1,1]上恒成立.令g(x)=x2+2(1-a)x-2a,则解得a≥.4.B解析由f(x)>2x+4,得f(x)-2x-4>0,设F(x)=f(x)-2x-4,则F'(x)=f'(x)-2,因为f'(x)>2,所以F'(x)>0在R上恒成立,所以F(x)在R上单调递增.而F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.故选B.5.A解析F'(x)=f'(x)-k,如下图所示,从而可知函数y=F'(x)共有三个零点x1,x2,x3,因此函数F(x)在(-∞,x1)上单调递减,在(x1,x2)上单调递增,在(x2,x3)上单调递减,在(x3,+∞)上单调递增,故x1,x3为极小值点,x2为极大值点,即F(x)有1个极大值点,2个极小值点,应选A.6.D解析函数y=ln(x+1)(x≥0)的图象绕坐标原点逆时针方向连续旋转时,当且仅当其任意切线的倾斜角小于等于90°时,其图象都仍然是一个函数的图象,因为x≥0时y'=是减函数,且0

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标)高考数学二轮复习 专题能力训练5 导数及其应用 理-人教版高三全册数学试题

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群