2018高考数学异构异模复习考案第十章圆锥曲线与方程10.1.2椭圆的几何性质撬题文1.一个圆经过椭圆+=1的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为________.答案2+y2=解析由题意知,圆过椭圆的三个顶点(4,0),(0,2),(0,-2),设圆心为(a,0),其中a>0,由4-a=,解得a=,所以该圆的标准方程为2+y2=.2.过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率等于________.答案解析设A(x1,y1),B(x2,y2),则+=1①,+=1②.①、②两式相减并整理得=-·.把已知条件代入上式得,-=-×,∴=,故椭圆的离心率e==.3.已知椭圆C:+=1(a>b>0)的左焦点为F,C与过原点的直线相交于A,B两点,连接AF,BF.若|AB|=10,|AF|=6,cos∠ABF=,则C的离心率e=________.答案解析如图,设右焦点为F1,|BF|=x,则cos∠ABF==.解得x=8,故∠AFB=90°.由椭圆及直线关于原点对称可知|AF1|=8,且∠FAF1=90°,△FAF1是直角三角形,|F1F2|=10,故2a=8+6=14,2c=10,e==.4.设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为.(1)求E的离心率e;(2)设点C的坐标为(0,-b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.解(1)由题设条件知,点M的坐标为,又kOM=,从而=,进而得a=b,c==2b,故e==.(2)由题设条件和(1)的计算结果可得,直线AB的方程为+=1,点N的坐标为.设点N关于直线AB的对称点S的坐标为,则线段NS的中点T的坐标为.又点T在直线AB上,且kNS·kAB=-1,从而有解得b=3.所以a=3,故椭圆E的方程为+=1.5.如图,椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,过F2的直线交椭圆于P,Q两点,且PQ⊥PF1.(1)若|PF1|=2+,|PF2|=2-,求椭圆的标准方程;(2)若|PF1|=|PQ|,求椭圆的离心率e.解(1)由椭圆的定义,2a=|PF1|+|PF2|=(2+)+(2-)=4,故a=2.设椭圆的半焦距为c,由已知PF1⊥PF2,因此2c=|F1F2|===2,即c=,从而b==1.故所求椭圆的标准方程为+y2=1.(2)解法一:连接QF1,如图,设点P(x0,y0)在椭圆上,且PF1⊥PF2,则+=1,x+y=c2,求得x0=±,y0=±.由|PF1|=|PQ|>|PF2|得x0>0,从而|PF1|2=2+=2(a2-b2)+2a=(a+)2.由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PF2,|PF1|=|PQ|,知|QF1|=|PF1|,因此(2+)|PF1|=4a,即(2+)(a+)=4a,于是(2+)(1+)=4,解得e==-.解法二:连接QF1,如上图,由椭圆的定义,|PF1|+|PF2|=2a,|QF1|+|QF2|=2a.从而由|PF1|=|PQ|=|PF2|+|QF2|,有|QF1|=4a-2|PF1|.又由PF1⊥PQ,|PF1|=|PQ|,知|QF1|=|PF1|,因此,4a-2|PF1|=|PF1|.|PF1|=2(2-)a,从而|PF2|=2a-|PF1|=2a-2(2-)a=2(-1)a.由PF1⊥PF2,知|PF1|2+|PF2|2=|F1F2|2=(2c)2,因此e=====-.6.已知椭圆E:+=1(a>b>0)的半焦距为c,原点O到经过两点(c,0),(0,b)的直线的距离为c.(1)求椭圆E的离心率;(2)如图,AB是圆M:(x+2)2+(y-1)2=的一条直径,若椭圆E经过A,B两点,求椭圆E的方程.解(1)过点(c,0),(0,b)的直线方程为bx+cy-bc=0,则原点O到该直线的距离d==,由d=c,得a=2b=2,解得离心率=.(2)解法一:由(1)知,椭圆E的方程为x2+4y2=4b2.①依题意,圆心M(-2,1)是线段AB的中点,且|AB|=.易知,AB与x轴不垂直,设其方程为y=k(x+2)+1,代入①得(1+4k2)x2+8k(2k+1)x+4(2k+1)2-4b2=0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.由x1+x2=-4,得-=-4,解得k=.从而x1x2=8-2b2.于是|AB|=|x1-x2|==.由|AB|=,得=,解得b2=3.故椭圆E的方程为+=1.解法二:由(1)知,椭圆E的方程为x2+4y2=4b2.②依题意,点A,B关于圆心M(-2,1)对称,且|AB|=.设A(x1,y1),B(x2,y2),则x+4y=4b2,x+4y=4b2,两式相减并结合x1+x2=-4,y1+y2=2,得-4(x1-x2)+8(y1-y2)=0.易知AB与x轴不垂直,则x1≠x2,所以AB的斜率kAB==...