电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第2讲 参数方程 第2课时 圆的参数方程课后提能训练 新人教A版选修4-4-新人教A版高二选修4-4数学试题VIP免费

高中数学 第2讲 参数方程 第2课时 圆的参数方程课后提能训练 新人教A版选修4-4-新人教A版高二选修4-4数学试题_第1页
1/3
高中数学 第2讲 参数方程 第2课时 圆的参数方程课后提能训练 新人教A版选修4-4-新人教A版高二选修4-4数学试题_第2页
2/3
高中数学 第2讲 参数方程 第2课时 圆的参数方程课后提能训练 新人教A版选修4-4-新人教A版高二选修4-4数学试题_第3页
3/3
第2课时圆的参数方程A.基础巩固1.点(1,2)在圆的()A.内部B.外部C.圆上D.与θ的值有关【答案】A【解析】圆化为普通方程为(x+1)2+y2=64,将(1,2)代入左边可得(x+1)2+y2=8<64,故选A.2.(2017年钦州期末)直线方程为xcosφ+ysinφ=2(φ为常数),圆的参数方程为(θ为参数),则直线与圆的位置关系为()A.相交不过圆心B.相交且经过圆心C.相切D.相离【答案】C【解析】根据题意,圆的参数方程为则圆的普通方程为x2+y2=4,圆心坐标为(0,0),半径为2,圆心到直线xcosφ+ysinφ=2的距离为d,则d==2,则直线与圆相切.故选C.3.圆(x-r)2+y2=r2(r>0),点M在圆上,O为原点,以∠MOx=φ为参数,则圆的参数方程为()A.B.C.D.【答案】D【解析】设圆心为O′,M(x,y),连接O′M,∵O′为圆心,∴∠MO′x=2φ.如下图,则4.(2017年乌兰察布校级期中)P(x,y)是曲线(0≤θ<π,θ是参数)上的动点,则的取值范围是()A.B.C.D.【答案】A【解析】∵曲线(0≤θ<π,θ是参数),∴其普通方程为(x+2)2+y2=1(-3<x≤-1,y≥0).∴该曲线是以点C(-2,0)为圆心,半径为1的上半圆.设点P(x,y)为曲线上一动点,则=kOP,当P的坐标为时,有最小值为-,当P的坐标为(-1,0)时,有最大值为0,∴的取值范围是.故选A.5.若直线3x+4y+m=0与圆(θ为参数)相切,则实数m的值是______________.【答案】0或10【解析】由圆的参数方程可得圆心为(1,-2),半径为1,直线与圆相切,则圆心到直线的距离等于半径,即=1,m=0或10.6.若直线y=x+b与曲线≤有两个不同的交点,则实数b的取值范围是______________.1【答案】b∈(-,-1]【解析】曲线(θ为参数且-≤θ≤)表示的是以原点为圆心,1为半径的圆的右半圆.如右图,直线y=x+b与曲线有两个不同的交点,直线应介于两直线l1与l2之间,则b∈(-,-1].7.在极坐标系中,圆A与圆C:ρ=2cosθ+4sinθ关于直线θ=对称.(1)求圆A的极坐标方程;(2)P为圆A上任意一点,求OP·OC(其中O为极点)的取值范围.【解析】(1)圆C:ρ=2cosθ+4sinθ,即ρ2=2ρcosθ+4ρsinθ,可得圆C的直角坐标方程为x2+y2=2x+4y,即(x-1)2+(y-2)2=5,直线l:θ=,即y=-x,则(1,2)关于直线l的对称点为(-2,-1).∴圆A:(x+2)2+(y+1)2=5,展开把ρ2=x2+y2,y=ρsinθ,x=ρcosθ代入,可得极坐标方程ρ+4cosθ+2sinθ=0.(2)设P,∴OP·OC=-2+cosθ+2(-1+sinθ)=-4+5=-4+5cos(θ-α)∈[-9,1].B.能力提升8.参数方程(t为参数)所表示的曲线是()ABCD【答案】D【解析】由参数方程可得t=,代入得y=x,得=,两边平方得=-1=,得x2+y2=1,又=≥0且x=≠0,所以xy≥0且x≠0.故选D.23

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第2讲 参数方程 第2课时 圆的参数方程课后提能训练 新人教A版选修4-4-新人教A版高二选修4-4数学试题

您可能关注的文档

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部