2015-2016学年黑龙江省牡丹江一中高三(上)期末数学模拟试卷(文科)一、选择题(单选,每题5分,共60分)1.若全集U=R,集合A={x|x2+4x+3>0},B={x|log3(2﹣x)≤1},则∁U(A∩B)=()A.{x|x<﹣1或x>2}B.{x|x<﹣1或x≥2}C.{x|x≤﹣1或x>2}D.{x|x≤﹣1或x≥2}2.复数z满足,则|z|=()A.B.2C.D.3.设f(x)是定义在R上的周期为3的函数,当x∈[﹣2,1)时,f(x)=,则f()=()A.0B.1C.D.﹣14.下列四个命题①已知命题P:∀x∈R,x2+x<0,则¬P:∃x∈R,x2+x<0;②的零点所在的区间是(1,2);③若实数x,y满足xy=1,则x2+2y2的最小值为;④设a,b是两条直线,α,β是两个平面,则a⊂α,b⊥β,α∥β是a⊥b的充分条件;其中真命题的个数为()A.0B.1C.2D.35.已知倾斜角为θ的直线,与直线x﹣3y+l=0垂直,则=()A.B.一C.D.一6.已知双曲线﹣=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点,且双曲线的一条渐近线与抛物线的准线交于点,则双曲线的离心率为()A.B.C.D.7.函数f(x)=2x﹣4sinx,x∈[﹣,]的图象大致是()A.B.C.D.8.定义域为R的函数f(x)满足f(x+2)=2f(x)﹣2,当x∈(0,2]时,f(x)=,若x∈(0,4]时,t2﹣≤f(x)≤3﹣t恒成立,则实数t的取值范围是()A.[2,+∞)B.C.D.[1,2]9.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1B.y=C.y=D.y=(x2﹣2x)ex10.如图,在正方体ABCD﹣A1B1C1D1中,P是侧面BB1C1C内一动点,若P到直线BC与直线C1D1的距离相等,则动点P的轨迹所在的曲线是()A.直线B.圆C.双曲线D.抛物线11.直线l1:y=x、l2:y=x+2与⊙C:x2+y2﹣2mx﹣2ny=0的四个交点把⊙C分成的四条弧长相等,则m=()A.0或1B.0或﹣1C.﹣1D.112.若存在正实数M,对于任意x∈(1,+∞),都有|f(x)|≤M,则称函数f(x)在(1,+∞)上是有界函数.下列函数:①f(x)=;②f(x)=;③f(x)=;④f(x)=xsinx.其中“在(1,+∞)上是有界函数”的序号为()A.②③B.①②③C.②③④D.③④二、填空题13.一个几何体的三视图如图所示,则该几何体的体积.14.已知平行四边形ABCD中,∠A=45°,,AB=2,F为BC边上一点,且=2,若AF与BD交于点E,则=.15.设平面区域D是由双曲线y2﹣=1的两条渐近线和抛物线y2=﹣8x的准线所围成的三角形区域(含边界),若点(x,y)∈D,则z=|3x﹣4y+5|的最大值是.16.已知数列{an}满足a1=1,an+an+1=(n∈N﹡),Sn=a1+a2•4+a3•42+…+an•4n﹣1类比课本中推导等比数列前n项和公式的方法,可求得5Sn﹣4nan=.三、解答题(17题---21题每题各12分,选做题10分)17.在△ABC中,已知角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.(1)若•=,b=,求a+c的值;(2)求2sinA﹣sinC的取值范围.18.某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:一次购物款(单位:元)[0,50)[50,100)[100,150)[150,200)[200,+∞)顾客人数m2030n10统计结果显示100位顾客中购物款不低于100元的顾客占60%,据统计该商场每日大约有5000名顾客,为了增加商场销售额度,对一次性购物不低于100元的顾客发放纪念品(2015•哈尔滨校级三模)如图,在斜三棱柱ABC﹣A1B1C1中,侧面AA1B1B⊥底面ABC,侧棱AA1与底面ABC成60°的角,AA1=2,底面ABC是边长为2的正三角形,其重心为G点,E是线段BC1上一点,且.(1)求证:GE∥侧面AA1B1B;(2)求三棱锥E﹣ABC的体积.20.已知椭圆的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M、N两点,直线A1M的斜率为.(Ⅰ)求椭圆的离心率;(Ⅱ)若△A1MN的外接圆在M处的切线与椭圆相交所得弦长为,求椭圆方程.21.已知函数f(x)=x2﹣(a﹣2)x﹣alnx,(Ⅰ)求函数f(x)的单调区间;(Ⅱ)设函数g(x)=﹣x3﹣ax2+a﹣,若存在α,β∈(0,a],使得|f(α)﹣g(β)|<a成立,求a的取值范围;(Ⅲ)若方程f(x)=c有两个不相等的实数根x1,x2,求证:f′()>0.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.选修4-1:几何证明选讲22...