课时作业34等比数列一、选择题1.设数列{an}是等比数列,前n项和为Sn,若S3=3a3,则公比q为()A.-B.1C.-或1D.解析:当q=1时,满足S3=3a1=3a3.当q≠1时,S3==a1(1+q+q2)=3a1q2,解得q=-,综上q=-或q=1.答案:C2.在等比数列{an}中,若a4,a8是方程x2-3x+2=0的两根,则a6的值是()A.±B.-C.D.±2解析:由题意得a4a8=2,且a4+a8=3,则a4>0,a8>0,又{an}为等比数列,故a4,a6,a8同号,且a=a4a8=2,故a6=,选C.答案:C3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则=()A.4n-1B.4n-1C.2n-1D.2n-1解析:q==,则==2n-1.答案:C4.等比数列{an}中,已知对任意正整数n,a1+a2+a3+…+an=2n-1,则a+a+a+…+a等于()A.(4n-1)B.(2n-1)C.4n-1D.(2n-1)2解析:由题意知a1=1,q=2,数列{a}是以1为首项,4为公比的等比数列,a+a+…+a==(4n-1).答案:A5.已知公差不为0的等差数列{an}满足a1,a3,a4成等比数列,Sn为数列{an}的前n项和,则的值为()A.2B.3C.D.解析:由题意,a1(a1+3d)=(a1+2d)2,d≠0,∴a1=-4d,∴===2.答案:A6.已知数列{an},{bn}满足a1=b1=3,an+1-an==3,n∈N*,若数列{cn}满足cn=ban,则c2013=()A.92012B.272012C.92013D.272013解析:由已知条件知{an}是首项为3,公差为3的等差数列,数列{bn}是首项为3,公比为3的等比数列,∴an=3n,bn=3n,又cn=ban=33n,∴c2013=33×2013=272013,故选D.答案:D二、填空题7.在等比数列{an}中,a1+a2=30,a3+a4=60,则a7+a8=________.解析: a1+a2=a1(1+q)=30,a3+a4=a1q2(1+q)=60,∴q2=2,∴a7+a8=a1q6(1+q)=[a1(1+q)]·(q2)3=30×8=240.答案:2408.(2014·安徽卷)如图,在等腰直角三角形ABC中,斜边BC=2,过点A作BC的垂线,垂足为A1;过点A1作AC的垂线,垂足为A2;过点A2作A1C的垂线,垂足为A3;…,依此类推,设BA=a1,AA1=a2,A1A2=a3,…,A5A6=a7,则a7=________.解析:由题意知数列{an}是以首项a1=2,公比q=的等比数列,∴a7=a1·q6=2×6=.答案:9.已知{an}是等比数列,a2=2,a5=,则Sn=a1+a2+…+an的取值范围是________.解析:因为{an}是等比数列,所以可设an=a1qn-1.因为a2=2,a5=,所以解得所以Sn=a1+a2+…+an==8-8×n.因为01,∴q=2,∴a1=1.故数列{an}的通项为an=2n-1.(2)由于bn=lna3n+1,n=1,2,…,由(1)得a3n+1=23n,∴bn=ln23n=3nln2.又bn+1-bn=3ln2,故数列{bn}为等差数列.∴Tn=b1+b2+…+bn===ln2.故Tn=ln2.11.已知数列{an}中,a1=1,an·an+1=n,记T2n为{an}的前2n项的和,bn=a2n+a2n-1,n∈N*.(1)判断数列{bn}是否为等比数列,并求出bn;(2)求T2n.解:(1) an·an+1=n,∴an+1·an+2=n+1,∴=,即an+2=an. bn=a2n+a2n-1,∴===,∴{bn}是公比为的等比数列. a1=1,a1·a2=,∴a2=⇒b1=a1+a2=.∴bn=×n-1=.(2)由(1)可知an+2=an,∴a1,a3,a5,…是以a1=1为首项,以为公比的等比数列;a2,a4,a6,…是以a2=为首项,以为公比的等比数列,∴T2n=(a1+a3+…+a2n-1)+(a2+a4+…+a2n)=+=3-.1.已知等比数列{an}的前n项和为Sn,则下列一定成立的是()A.若a3>0,则a2013<0B.若a4>0,则a2014<0C.若a3>0,则S2013>0D.若a4>0,则S2014>0解析:若a3>0,则a2013=a3q2010>0;若a4>0,则a2014=a4q2010>0,故A,B错;当a3>0,则a1=>0,因为1-q与1-q2013同号,所以S2013=>0,C正确.故选C.答案:C2.函数y=图象上存在不同的三点到原点的距离构成等比数列,则以下不可能成为公比的数是(...