2018高考数学异构异模复习考案第四章三角函数4.4.1正、余弦定理撬题文1.在△ABC中,若sin2A+sin2Bb,所以∠B=.7.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=a,2sinB=3sinC,则cosA的值为________.答案-解析由2sinB=3sinC,结合正弦定理得2b=3c,又b-c=a,所以b=c,a=2c.由余弦定理得cosA===-.8.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.解(1)S△ABD=AB·ADsin∠BAD,S△ADC=AC·ADsin∠CAD.因为S△ABD=2S△ADC,∠BAD=∠CAD,所以AB=2AC,由正弦定理可得==.(2)因为S△ABD∶S△ADC=BD∶DC,所以BD=.在△ABD和△ADC中,由余弦定理知,AB2=AD2+BD2-2AD·BDcos∠ADB,AC2=AD2+DC2-2AD·DCcos∠ADC.故AB2+2AC2=3AD2+BD2+2DC2=6.由(1)知AB=2AC,所以AC=1.