北京市西城区2019-2020学年高一数学上学期期末考试试题(含解析)一、选择题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={x|x=2k,k∈Z},B={x|﹣3<x<3},那么A∩B=()A.{﹣1,1}B.{﹣2,0}C.{﹣2,0,2}D.{﹣2,﹣1,0,1}2.(5分)方程组的解集是()A.{(1,﹣1),(﹣1,1)}B.{(1,1),(﹣1,﹣1)}C.{(2,﹣2),(﹣2,2)}D.{(2,2),(﹣2,﹣2)}3.(5分)函数y=的定义域是()A.[0,1)B.(1,+∞)C.(0,1)∪(1,+∞)D.[0,1)∪(1,+∞)4.(5分)下列四个函数中,在(0,+∞)上单调递减的是()A.y=x+1B.y=x2﹣1C.y=2xD.5.(5分)设a=log20.4,b=0.42,c=20.4,则a,b,c的大小关系为()A.a<b<cB.a<c<bC.b<a<cD.b<c<a6.(5分)若a>b>0,c<d<0,则一定有()A.ac>bdB.ac<bdC.ad<bcD.ad>bc7.(5分)设a∈R,b∈R.则“a>b”是“|a|>|b|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.(5分)某种药物的含量在病人血液中以每小时20%的比例递减.现医生为某病人注射了2000mg该药物,那么x小时后病人血液中这种药物的含量为()A.2000(1﹣0.2x)mgB.2000(1﹣0.2)xmgC.2000(1﹣0.2x)mgD.2000•0.2xmg9.(5分)如图,向量﹣等于()A.3﹣B.﹣3C.﹣3+D.﹣+310.(5分)某部影片的盈利额(即影片的票房收入与固定成本之差)记为y,观影人数记为x,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后y与x的函数图象.给出下列四种说法:①图(2)对应的方案是:提高票价,并提高成本;②图(2)对应的方案是:保持票价不变,并降低成本;③图(3)对应的方案是:提高票价,并保持成本不变;④图(3)对应的方案是:提高票价,并降低成本.其中,正确的说法是()A.①③B.①④C.②③D.②④二、填空题共6小题,每小题4分,共24分.11.(4分)已知方程x2﹣4x+1=0的两根为x1和x2,则x12+x22=.12.(4分)已知向量=(1,﹣2),=(﹣3,m),其中m∈R.若,共线,则||=.13.(4分)已知函数f(x)=log3x.若正数a,b满足,则f(a)﹣f(b)=.14.(4分)函数的零点个数是;满足f(x0)>1的x0的取值范围是.15.(4分)已知集合A={x|x2﹣x﹣6≥0},B={x|x>c},其中c∈R.①集合∁RA=;②若∀x∈R,都有x∈A或x∈B,则c的取值范围是.16.(4分)给定函数y=f(x),设集合A={x|y=f(x)},B={y|y=f(x)}.若对于∀x∈A,∃y∈B,使得x+y=0成立,则称函数f(x)具有性质P.给出下列三个函数:①;②;③y=lgx.其中,具有性质P的函数的序号是.三、解答题共6小题,共76分.解答应写出文字说明,演算步骤或证明过程.17.(12分)某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.(Ⅰ)这5人中男生、女生各多少名?(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.18.(12分)在直角坐标系xOy中,记函数的图象为曲线C1,函数的图象为曲线C2.(Ⅰ)比较f(2)和1的大小,并说明理由;(Ⅱ)当曲线C1在直线y=1的下方时,求x的取值范围;(Ⅲ)证明:曲线C1和C2没有交点.19.(13分)根据以往的成绩记录,甲、乙两名队员射击中靶环数(环数为整数)的频率分布情况如图所示.假设每名队员每次射击相互独立.(Ⅰ)求图中a的值;(Ⅱ)队员甲进行2次射击.用频率估计概率,求甲恰有1次中靶环数大于7的概率;(Ⅲ)在队员甲、乙中,哪一名队员的射击成绩更稳定?(结论无需证明)20.(13分)已知函数.(Ⅰ)证明:f(x)为偶函数;(Ⅱ)用定义证明:f(x)是(1,+∞)上的减函数;(Ⅲ)当x∈[﹣4,﹣2]时,求f(x)的值域.21.(13分)设某商品的利润只由生产成本和销售收入决定.生产成本C(单位:万元)与生产量x(单位:千件)间的函数关系是C=3+x;销售收...