天津市和平区第一中学2020届高三数学上学期10月月考试题(含解析)本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分,共150分,考试用120分钟考生务必将答案涂写在规定的位置上,答在试卷上的无效。祝各位考生考试顺利!一、选择题:1.已知集合A={x|x2﹣x﹣2<0},B={x|≥﹣1},则A∪B=()A.(﹣1,2)B.(﹣1,2]C.(0,1)D.(0,2)【答案】B【解析】【分析】先分别求出集合A和B,由此能求出A∪B.【详解】 集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|≥﹣1}={x|0<x≤2},∴A∪B={x|﹣1<x≤2}=(﹣1,2].故选:B.【点睛】本题考查并集的求法,考查并集定义等基础知识,考查运算求解能力,是基础题.2.对一切,恒成立,则实数的取值范围是()A.B.C.D.【答案】B【解析】【分析】先求得的取值范围,根据恒成立问题的求解策略,将原不等式转化为,再解一元二次不等式求得的取值范围.【详解】解:对一切,恒成立,转化为:的最大值,又知,的最大值为;所以,解得或.故选:B.【点睛】本小题主要考查恒成立问题的求解策略,考查三角函数求最值的方法,考查一元二次不等式的解法,考查化归与转化的数学思想方法,属于中档题.3.把函数图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把所得曲线向右平移个单位长度,最后所得曲线的一条对称轴是()A.B.C.D.【答案】A【解析】【分析】先求出图像变换最后得到的解析式,再求函数图像的对称轴方程.【详解】由题得图像变换最后得到的解析式为,令,令k=-1,所以.故选:A【点睛】本题主要考查三角函数图像变换和三角函数图像对称轴的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.4.已知,,,则()A.B.C.D.【答案】C【解析】【分析】通过分段法,根据指数函数、对数函数和三角函数的性质,判断出,由此选出正确结论.【详解】解: ,,,;∴.故选:C.【点睛】本小题主要考查利用对数函数、指数函数和三角函数的性质比较大小,考查分段法比较大小,属于基础题.5.若,则()A.B.C.D.【答案】C【解析】【分析】利用诱导公式以及二倍角公式,化简求得的值.【详解】解: ,则,故选:C.【点睛】本小题主要考查利用诱导公式和二倍角公式进行恒等变换,求表达式的值,属于基础题.6.已知是定义在上的奇函数,若,,则的值为()A.-3B.0C.3D.6【答案】A【解析】【分析】根据函数为奇函数,结合题中条件,求出函数的周期,即可求出结果.【详解】 为奇函数,∴.又,所以,因此,∴函数是周期为4的周期函数,所以.又,,因此.故选A.【点睛】本题主要考查函数奇偶性与周期性的应用,灵活运用函数奇偶性与周期性即可,属于常考题型.7.用边长为的正方形铁皮做一个无盖的铁盒,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒,当铁盒的容积最大时,截去的小正方形的边长为()A.B.C.D.【答案】C【解析】【分析】设截去的小正方形的边长为x,求出铁盒的容积的解析式,再利用导数求函数的最值和此时x的值得解.【详解】设截去的小正方形的边长为x,则铁盒的长和宽为18-2x,高为x,所以,所以,所以函数在(0,3)单调递增,在(3,9)单调递减,所以当x=3时,函数取最大值.故选:C【点睛】本题主要考查导数的应用,意在考查学生对该知识的理解掌握水平和分析推理应用能力.8.设函数,若函数恰有两个零点,则实数的取值范围为()A.B.C.D.【答案】A【解析】【分析】首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【点睛】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.9.已知函数,其中,,其图象关于直线对称,对满足的,,有,将函数的图象向左平移个单位长度得到函数的图象,则函数的单调递减区间是()A.B.C.D.【答案】B【解析】...