2014届高三第三次月考数学(文科)试题参考答案(1)C解析:|21,|x21,ExxxFxx或或故FE.(2)A解析:tan0sin,cos同号,故选A.(3)D解析:由,0cos,0252xx可解得)5,23()2,2()23,5(x.(4)D解析:由161163204,aaaa11111611()1144.2aaSa(5)B解析:sin2cos(2),2yxx向左平移8个单位得cos[2()]cos2824yxx.(6)C解析:sintan=cossin21cosmmnmn.(7)B解析:,22BCACBABCBCBCBC�abc,故选B.(8)A解析:313(),232nnSrr.(9)B解析:设()fxx,则93,12,即()fxx,所以11nann1nn,所以201412201421322015201420151Saaa.(10)D解析:3()163cos4sin2fxxx,1()2sin23cos22f4sin()236,,4363,3sin(),1324sin()2343,,1()23262f,(11)42nan解析:设na的公差为d,由已知可得422)1(2,221010503311513nnadadaSdaSn.(12)25解析:由|a+b|52,可得|a|2+2a·b+|b|2=50,|b|2=20,所以|b|=25.(13)2解析:由()3sinfxx的值域是332,,画出简图可取1262xx,时,min212263mxx,12766xx,时,max2174663mxx,此时maxmin42233mm.(14)2解析:由已知根据正弦定理可得sincossin12cosCBAA,整理得sin2sincossincosCCAAB,又因为sinsin()sincoscossinCABABAB代入得cos(sin2sin)0ABC,显然sin2sin0BC,所以可得cos0A,又因为(0,)A,所以2A.(15)②④解析:①数列na是递增数列的充要条件是10,1aq,或10,01aq,不正确;②111,nnnaaaqqq所以11,aq即1,aq正确;③1,1,1,1,成等比数列,但4841280,SSSSS不正确;④10,nnnaSS再结合各项的符号可知正确;⑤当10,10aq,不正确,所以正确的是②④.(16)解析:23()sin()cos()[2cos()1]2222fxxxxab13sin(2)cos(2)sin(2).223xxx(3分)(Ⅰ)由题意:12(),222∴1,()sin(2),3fxx又 ()1,12f∴sin()1,2(),222kkZ 0,2∴0,()sin(2);3fxx(8分)(Ⅱ)令222(),232kxkkZ得5,1212kxk ,,22x∴50,,1212kx∴()fx的单调递增区间是5,.1212(12分)(17)解析:(Ⅰ)由题意:(0)10,()0,(0)()0,444fafaff∴函数()fx在0,4上有零点;(3分)又cossin12sin()104fxxxx对0,4x恒成立,∴()fx在0,4上单调递增,∴()fx在区间0,4上有且只有一个零点;(6分)(Ⅱ)由题意得cossinaxxx对[0,]2x恒成立,令()cossingxxxx,则()1sincos12sin()4gxxxx; [0,]2x,∴3444x,2sin()124x,即12sin()24x,∴()0gx,故()gx在[0,]2上单调递减,∴max[()](0)1gxg,从而a的取值范围是1.a(12分)(18)解析:(Ⅰ)设数列na的公比为,q由题意352440,aaaqaq则2,q 3241120,aaaqaq∴12,2;nnaa(4分)(Ⅱ)由(Ⅰ)可知:2111,4nnnnbba111,4nnnbb(n2)111111545(T)4b4bnnnnnnnnnnnnTbT当n2时,()(5T-4b)1)(4444511111nnn...