高中数学学习材料(灿若寒星精心整理制作)1.计算sin7°cos23°+sin83°cos67°的值为()A.-12B.12C.32D.-32解析:选B.sin7°cos23°+sin83°cos67°=cos83°cos23°+sin83°sin23°=cos(83°-23°)=cos60°=12.故选B.2.计算cos(80°+2α)cos(65°+2α)+sin(80°+2α)sin(65°+2α)的值为()A.2-64B.32C.6+24D.12解析:选C.原式=cos[(80°+2α)-(65°+2α)]=cos15°=cos(45°-30°)=2+64.3.sinθ+cosθ等于()A.2cos(π4+θ)B.2cos(π4-θ)C.cos(π4+θ)D.cos(π4-θ)解析:选B.sinθ+cosθ=2(sinπ4sinθ+cosπ4cosθ)=2cos(π4-θ).4.已知cosα=1213,α∈(32π,2π),则cos(α-π4)的值为()A.5213B.7213C.17226D.7226解析:选D.∵α∈(32π,2π),∴sinα=-513,∴cos(α-π4)=cosαcosπ4+sinαsinπ4=22×1213+(-513)×22=7226.5.已知α,β均为锐角,且cosα=255,cosβ=1010,则α-β等于()A.π4B.-π4C.π2D.-π2解析:选B.∵α,β均为锐角,∴sinα=55,sinβ=31010,∴cos(α-β)=cosαcosβ+sinαsinβ=255×1010+55×31010=22.又sinα0.由cosα=45,cos(α+β)=35,得sinα=35,sin(α+β)=45.∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)·sinα=35×45+45×35=2425.