电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

和差化积、积化和差、万能公式VIP免费

和差化积、积化和差、万能公式_第1页
1/5
和差化积、积化和差、万能公式_第2页
2/5
和差化积、积化和差、万能公式_第3页
3/5
正、余弦和差化积公式指高中数学三角函数部分的一组恒等式sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]【注意右式前的负号】以上四组公式可以由积化和差公式推导得到证明过程sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]的证明过程因为sin(α+β)=sinαcosβ+cosαsinβ,sin(α-β)=sinαcosβ-cosαsinβ,将以上两式的左右两边分别相加,得sin(α+β)+sin(α-β)=2sinαcosβ,设α+β=θ,α-β=φ那么α=(θ+φ)/2,β=(θ-φ)/2把α,β的值代入,即得sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]正切的和差化积tanα±tanβ=sin(α±β)/(cosα·cosβ)(附证明)cotα±cotβ=sin(β±α)/(sinα·sinβ)tanα+cotβ=cos(α-β)/(cosα·sinβ)tanα-cotβ=-cos(α+β)/(cosα·sinβ)证明:左边=tanα±tanβ=sinα/cosα±sinβ/cosβ=(sinα·cosβ±cosα·sinβ)/(cosα·cosβ)=sin(α±β)/(cosα·cosβ)=右边∴等式成立注意事项在应用和差化积时,必须是一次同名三角函数方可实行。若是异名,必须用诱导公式化为同名;若是高次函数,必须用降幂公式降为一次口诀正加正,正在前,余加余,余并肩正减正,余在前,余减余,负正弦反之亦然生动的口诀:(和差化积)帅+帅=帅哥1帅-帅=哥帅咕+咕=咕咕哥-哥=负嫂嫂反之亦然记忆方法和差化积公式的形式比较复杂,记忆中以下几个方面是难点,下面指出了各自的简单记忆方法。结果乘以2这一点最简单的记忆方法是通过三角函数的值域判断。sin和cos的值域都是[-1,1],其积的值域也应该是[-1,1],而和差的值域却是[-2,2],因此乘以2是必须的。也可以通过其证明来记忆,因为展开两角和差公式后,未抵消的两项相同而造成有系数2,如:cos(α-β)-cos(α+β)=[(cosαcosβ+sinαsinβ)-(cosαcosβ-sinαsinβ)]=2sinαsinβ故最后需要乘以2。只有同名三角函数能和差化积无论是正弦函数还是余弦函数,都只有同名三角函数的和差能够化为乘积这一点主要是根据证明记忆,因为如果不是同名三角函数,两角和差公式展开后乘积项的形式都不同,就不会出现相抵消和相同的项,也就无法化简下去了乘积项中的角要除以2在和差化积公式的证明中,必须先把α和β表示成两角和差的形式,才能够展开。熟知要使两个角的和、差分别等于α和β,这两个角应该是(α+β)/2和(α-β)/2,也就是乘积项中角的形式。注意和差化积和积化和差的公式中都有一个“除以2”,但位置不同;而只有和差化积公式中有“乘以2”。使用哪两种三角函数的积这一点较好的记忆方法是拆分成两点,一是是否同名乘积,二是“半差角”(α-β)/2的三角函数名。是否同名乘积,仍然要根据证明记忆。注意两角和差公式中,余弦的展开中含有两对同名三角函数的乘积,正弦的展开则是两对异名三角函数的乘积。所以,余弦的和差化作同名三角函数的乘积;正弦的和差化作异名三角函数的乘积。2(α-β)/2的三角函数名规律为:和化为积时,以cos(α-β)/2的形式出现;反之,以sin(α-β)/2的形式出现。由函数的奇偶性记忆这一点是最便捷的。如果要使和化为积,那么α和β调换位置对结果没有影响,也就是若把(α-β)/2替换为(β-α)/2,结果应当是一样的,从而(α-β)/2的形式是cos(α-β)/2;另一种情况可以类似说明。余弦-余弦差公式中的顺序相反/负号这是一个特殊情况,完全可以死记下来。当然,也有其他方法可以帮助这种情况的判定,如(0,π]内余弦函数的单调性。因为这个区间内余弦函数是单调减的,所以当α大于β时,cosα小于cosβ。但是这时对应的(α+β)/2和(α-β)/2在(0,π)的范围内,其正弦的乘积应大于0,所以要么反过来把cosβ放到cosα前面,要么就在式子的最前面加上负号。积化和差公式sinαsinβ=[cos(α-β)-cos(α+β)]/2(注意:此时差的余弦在和的余弦前面)或写作:sinαsinβ=-[cos(α+β)-cos(α-β)]/2(注意:此时公式前有负号)cosαcosβ=[cos(α-β)+cos(α+β)]/2sinαcosβ=[sin(α+β)+sin(α-β)]/2cosαsinβ=[sin(α...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

和差化积、积化和差、万能公式

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部