9.7抛物线A组专项基础训练(时间:40分钟)1.(2016·四川)抛物线y2=4x的焦点坐标是()A.(0,2)B.(0,1)C.(2,0)D.(1,0)【解析】由题意得2p=4,p=2,抛物线的焦点坐标为(1,0).【答案】D2.(2017·河南中原名校联考)抛物线y2=2px(p>0)的焦点为F,O为坐标原点,M为抛物线上一点,且|MF|=4|OF|,△MFO的面积为4,则抛物线的方程为()A.y2=6xB.y2=8xC.y2=16xD.y2=【解析】设M(x,y),因为|OF|=,|MF|=4|OF|,所以|MF|=2p,由抛物线定义知x+=2p,所以x=p,所以y=±p,又△MFO的面积为4,所以××p=4,解得p=4(p=-4舍去).所以抛物线的方程为y2=8x.【答案】B3.(2017·广东广州3月模拟)如果P1,P2,…,Pn是抛物线C:y2=4x上的点,它们的横坐标依次为x1,x2,…,xn,F是抛物线C的焦点,若x1+x2+…xn=10,则|P1F|+|P2F|+…+|PnF|=()A.n+10B.n+20C.2n+10D.2n+20【解析】由抛物线的方程y2=4x可知其焦点为(1,0),准线为x=-1,由抛物线的定义可知|P1F|=x1+1,|P2F|=x2+1,…,|PnF|=xn+1,所以|P1F|+|P2F|+…+|PnF|=x1+1+x2+1+…+xn+1=(x1+x2+…+xn)+n=n+10.故选A.【答案】A4.(2017·江西南昌一模)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线C的一个交点,若|FP|=3|FQ|,则|QF|=()A.B.C.3D.2【解析】设l与x轴的交点为M,如图所示,过Q作QN⊥l,垂足为N,则△PQN∽△PFM,所以==,因为|MF|=4,所以|NQ|=,故|QF|=|QN|=,故选A.【答案】A5.(2017·湖北七市4月联考)过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2-=1的一条渐近线平行,并交抛物线于A、B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为()A.y2=2xB.y2=3xC.y2=4xD.y2=x【解析】由双曲线方程x2-=1知其渐近线方程为y=±x,∴过抛物线焦点F且与渐近线平行的直线AB的斜率为±,不妨取kAB=,则其倾斜角为60°,即∠AFx=60°.过A作AN⊥x轴,垂足为N.由|AF|=2,得|FN|=1.过A作AM⊥准线l,垂足为M,则|AM|=p+1.由抛物线的定义知,|AM|=|AF|.∴p+1=2,∴p=1,∴抛物线的方程为y2=2x,故选A.【答案】A6.(2016·江西九校联考)抛物线y2=2px(p>0)的焦点为F,其准线与双曲线y2-x2=1相交于A,B两点,若△ABF为等边三角形,则p=________.【解析】易得双曲线y2-x2=1过点,从而-=1,所以p=2.【答案】27.(2016·山西四校三联)过抛物线y2=4x的焦点F作倾斜角为45°的直线交抛物线于A、B两点,则弦长|AB|为________.【解析】设A(x1,y1),B(x2,y2).易得抛物线的焦点是F(1,0),所以直线AB的方程是y=x-1,联立消去y得x2-6x+1=0,所以x1+x2=6,所以|AB|=x1+x2+p=6+2=8.【答案】88.(2017·西安模拟)设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A、B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.【解析】设直线l的方程为y=k(x+1)(k≠0),将其代入y2=4x得,k2x2+(2k2-4)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=-,所以xQ=-=-1,yQ=k(xQ+1)=,又|FQ|=2,F(1,0),所以+=4,解得k=±1.【答案】±19.(2016·浙江)如图,设抛物线y2=2px(p>0)的焦点为F,抛物线上的点A到y轴的距离等于|AF|-1.(1)求p的值;(2)若直线AF交抛物线于另一点B,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M.求M的横坐标的取值范围.【解析】(1)由题意可得,抛物线上点A到焦点F的距离等于点A到直线x=-1的距离,由抛物线的定义得=1,即p=2.(2)由(1)得,抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1.因为AF不垂直于y轴,可设直线AF:x=sy+1(s≠0),由消去x得y2-4sy-4=0,故y1y2=-4,所以,B.又直线AB的斜率为,故直线FN的斜率为-.从而得直线FN:y=-(x-1),直线BN:y=-.所以N.设M(m,0),由A,M,N三点共线得=,于是m=.所以m<0或m>2.经检验,m<0或m>2满足题意.综上,点M的横坐标的取值范围是(-∞,0)∪(2,+∞).10.(2015·福建)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在...