第二篇专题五第2讲空间中的平行与垂直[限时训练·素能提升](限时50分钟,满分76分)一、选择题(本题共6小题,每小题5分,共30分)1.(2018·潍坊模拟)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析若α∥β,则m∥n,这与m、n为异面直线矛盾,所以A不正确.将已知条件转化到正方体中,易知α与β不一定垂直,但α与β的交线一定平行于l,从而排除B、C.故选D.答案D2.(2018·乌鲁木齐二模)关于直线a,b及平面α,β,下列命题中正确的是A.若a∥α,α∩β=b,则a∥bB.若α⊥β,m∥α,则m⊥βC.若a⊥α,a∥β,则α⊥βD.若a∥α,b⊥a,则b⊥α解析A是错误的,因为a不一定在平面β内,所以a,b有可能是异面直线;B是错误的,若α⊥β,m∥α,则m与β可能平行,可能相交,也可能线在面内,故B错误;C是正确的,由直线与平面垂直的判断定理能得到C正确;D是错误的,直线与平面垂直,需直线与平面中的两条相交直线垂直.答案C3.(2018·全国卷Ⅱ)在正方体ABCD-A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为A.B.C.D.解析如图,连接BE,因为AB∥CD,所以异面直线AE与CD所成的角等于相交直线AE与AB所成的角,即∠EAB.不妨设正方体的棱长为2,则CE=1,BC=2,由勾股定理得BE=.又由AB⊥平面BCC1B1可得AB⊥BE,所以tan∠EAB==.故选C.答案C4.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案B5.(2018·石家庄质检)设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊂α,n∥α,则m∥n;②若α∥β,β∥γ,m⊥α,则m⊥γ;③若α∩β=n,m∥n,m∥α,则m∥β;④若α⊥γ,β⊥γ,则α∥β其中真命题的个数是A.0B.1C.2D.3解析①m∥n或m,n异面,故①错误;易知②正确;③m∥β或m⊂β,故③错误;④α∥β或α与β相交,故④错误.答案B6.(2018·全国卷Ⅰ)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为A.B.C.D.解析记该正方体为ABCD-A′B′C′D′,正方体的每条棱所在直线与平面α所成的角都相等,即共点的三条棱A′A,A′B′,A′D′与平面α所成的角都相等.如图,连接AB′,AD′,B′D′,因为三棱锥A′-AB′D′是正三棱锥,所以A′A,A′B′,A′D′与平面AB′D′所成的角都相等.分别取C′D′,B′C′,BB′,AB,AD,DD′的中点E,F,G,H,I,J,连接EF,FG,GH,IH,IJ,JE,易得E,F,G,H,I,J六点共面,平面EFGHIJ与平面AB′D′平行,且截正方体所得截面的面积最大.又EF=FG=GH=IH=IJ=JE=,所以该正六边形的面积为6××=,所以α截此正方体所得截面面积的最大值为,故选A.答案A二、填空题(本题共2小题,每小题5分,共10分)7.(2018·全国卷Ⅲ)已知圆锥的顶点为S,母线SA,SB互相垂直,SA与圆锥底面所成角为30°.若△SAB的面积为8,则该圆锥的体积为________.解析由题意画出图形,如图,设AC是底面圆O的直径,连接SO,则SO是圆锥的高.设圆锥的母线长为l,则由SA⊥SB,△SAB的面积为8,得l2=8,得l=4.在Rt△ASO中,由题意知∠SAO=30°,所以SO=l=2,AO=l=2.故该圆锥的体积V=π×AO2×SO=π×(2)2×2=8π.答案8π8.(2018·烟台模拟)如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,请你补充一个条件________,使平面MBD⊥平面PCD.①DM⊥PC;②DM⊥BM;③BM⊥PC;④PM=MC(填写你认为是正确的条件对应的序号).解析因为在四棱锥A-ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,所以BD⊥PA,BD⊥AC,因为PA∩AC=A,...