高二数学圆锥曲线的应用题苏教版【本讲教育信息】一.教学内容:圆锥曲线的应用题二.教学重点:1.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力.2.发展数学应用意识和创新意识,力求能用解析几何知识解决常见的应用题.三.知识点归纳:1.椭圆的定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.2.双曲线的定义平面内到两定点F1,F2的距离的差的绝对值为定值(小于|F1F2|)的点的轨迹.其中两定点为焦点,两焦点之间的距离为焦距.3.抛物线的定义平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.【典型例题】例1.设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m万千米和m万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为和,求该彗星与地球的最近距离.分析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆同时,还要注意结合椭圆的几何意义进行思考新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a-c,这样把问题就转化为求a,c或a-c.解:建立如图所示直角坐标系,设地球位于焦点F(-c,0)处,椭圆的方程为+=1,当过地球和彗星的直线与椭圆的长轴夹角为时,由椭圆的几何意义可知,彗星A只能满足∠xFA=(或∠xFA′=).作AB⊥Ox于B,则|FB|=|FA|=m,故由椭圆的第二定义可得m=(-c)①且m=(-c+m)②两式相减得m=·m,∴a=2c新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆代入①,得m=(4c-c)=c,∴c=m新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆∴a-c=c=m新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆答:彗星与地球的最近距离为m万千米.点评:(1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a-c,另一个是a+c.(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质.例2.某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP、BP运到P处(如图所示).已知PA=100m,PB=150m,∠APB=60°,试说明怎样运土最省工.分析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP到P较近;(2)沿BP到P较近;(3)沿AP、BP到P同样远新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆显然,第三类点是第一、二类的分界点,设M是分界线上的任意一点新疆源头学子小屋特级教师王新敞http://www.xjktyg.com/wxc/wxckt@126.comwxckt@126.comhttp://www.xjktyg.com/wxc/王新敞特级教师源头学子小屋新疆则有|MA|+|PA|=|MB...