课时提升作业十椭圆的简单几何性质一、选择题(每小题5分,共25分)1.(2015·广东高考)已知椭圆+=1(m>0)的左焦点为F1(-4,0),则m=()A.9B.4C.3D.2【解析】选C.由题意得:m2=25-42=9,因为m>0,所以m=3.2.(2016·烟台高二检测)椭圆+=1与+=1(0b>0)有两个顶点在直线x+2y=2上,则此椭圆的焦点坐标是()A.(±,0)B.(0,±)1C.(±,0)D.(0,±)【解析】选A.直线x+2y=2与坐标轴的交点为椭圆的顶点,又因为椭圆的焦点在x轴上,所以a=2,b=1,所以c==.所以椭圆的焦点坐标是(±,0).4.(2016·南昌高二检测)椭圆+=1(a>b>0)的左、右顶点分别是A,B,左、右焦点分别是F1,F2.若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为()A.B.C.D.-2【解析】选B.因为A,B分别为左右顶点,F1,F2分别为左右焦点,所以|AF1|=a-c,|F1F2|=2c,|BF1|=a+c,又由|AF1|,|F1F2|,|F1B|成等比数列得(a-c)(a+c)=4c2,即a2=5c2,所以离心率e=.【补偿训练】设椭圆的两个焦点分别为F1,F2,过F1作椭圆长轴的垂线交椭圆于点P,若△F1PF2为等腰直角三角形,则椭圆的离心率为()A.B.C.2-D.-1【解析】选D.设椭圆方程为+=1(a>b>0),因为F1(-c,0),所以P(-c,yP)代入椭圆方程得+=1,所以=,又因为b2=a2-c2,所以=2c,所以e2+2e-1=0,又0b>0)的长轴,若把线段AB分为100等份,过每个分点作AB的垂线,分别交椭圆的上半部分于点P1,P2,…,P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是()A.98aB.99aC.100aD.101a2【解析】选D.设F2为椭圆的右焦点,根据椭圆的定义及对称性有:|F1P1|=|F2P99|,|F1P2|=|F2P98|,…,|F1P49|=|F2P51|,因此|F1P1|+|F1P99|=|F1P2|+|F1P98|=…=|F1P49|+|F1P51|=|F1A|+|F1B|=2a.故结果应为50×2a+|F1P50|=101a.【误区警示】本题在求解过程中,易忽视|F1P50|,结果选C而致错.二、填空题(每小题5分,共15分)6.(2016·武汉高二检测)已知椭圆的中心在坐标原点,焦点在y轴上,且长轴长为12,离心率为,则椭圆方程为.【解析】因为椭圆的焦点在y轴上,所以设椭圆的方程为+=1(a>b>0).由得由a2=b2+c2,得b2=32.故椭圆的方程为+=1.答案:+=17.(2016·济南高二检测)已知椭圆+=1的离心率e=,则m的值为.【解析】由椭圆的标准方程,易知m>0且m≠5.①若05,则a2=m,b2=5.由=1-=,得m=.所以m的值为3或.答案:3或8.若点O和点F分别为椭圆+=1的中心和左焦点,点P为椭圆上的任意一点,则·的最大值为3.【解题指南】设P(x0,y0),利用数量积的坐标运算,结合椭圆的范围解出.【解析】由题意,F(-1,0),设点P(x0,y0),则有+=1,解得=3,因为=(x0+1,y0),=(x0,y0),所以·=x0(x0+1)+=x0(x0+1)+3=+x0+3,此二次函数对应的抛物线的对称轴为x0=-2,因为-2≤x0≤2,所以当x0=2时,·取得最大值+2+3=6.答案:6【误区警示】解题中容易不考虑x0的取值范围,而直接求出二次函数的最值,而导致错误.三、解答题(每小题10分,共20分)9.如图所示,F1,F2分别为椭圆的左、右焦点,椭圆上点M的横坐标等于右焦点的横坐标,其纵坐标等于短半轴长的,求椭圆的离心率.【解析】设椭圆方程为+=1(a>b>0),则M(c,b).代入椭圆方程,得+=1,所以=,所以=,即e=.【一题多解】设椭圆的长半轴、短半轴、半焦距长分别为a,b,c.则焦点为F1(-c,0),F2(c,0),M点的坐标为(c,b),则△MF1F2为直角三角形.在Rt△MF1F2中,|F1F2|2+|MF2|2=|MF1|2,4即4c2+b2=|MF1|2.而|MF1|+|MF2|=+b=2a,整理得3c2=3a2-2ab.又c2=a2-b2,所以3b=2a.所以=.所以e2===1-=,所以e=.10.(2016·潍坊高二检测)如图,已知椭圆+=1(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直...