电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 课时提升作业(二十三)3.3.2 函数的极值与导数检测(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学试题VIP免费

高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 课时提升作业(二十三)3.3.2 函数的极值与导数检测(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学试题_第1页
1/10
高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 课时提升作业(二十三)3.3.2 函数的极值与导数检测(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学试题_第2页
2/10
高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 课时提升作业(二十三)3.3.2 函数的极值与导数检测(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学试题_第3页
3/10
课时提升作业(二十三)函数的极值与导数(25分钟60分)一、选择题(每小题5分,共25分)1.(2015·天津高二检测)函数y=f(x)是定义在R上的可导函数,则下列说法不正确的是()A.若函数在x=x0时取得极值,则f′(x0)=0B.若f′(x0)=0,则函数在x=x0处取得极值C.若在定义域内恒有f′(x)=0,则y=f(x)是常数函数D.函数f(x)在x=x0处的导数是一个常数【解析】选B.f′(x0)=0是函数在x=x0处取得极值的必要不充分条件,故B错误,A,C,D均正确.2.设函数f(x)=xex,则()A.x=1为f(x)的极大值点B.x=-1为f(x)的极大值点C.x=1为f(x)的极小值点D.x=-1为f(x)的极小值点【解析】选D.f′(x)=ex+xex,令f′(x)=0得x=-1,当x<-1时,f′(x)<0;当x>-1时,f′(x)>0,故x=-1时取极小值.【补偿训练】设函数f(x)=+lnx,则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点【解析】选D.f′(x)=-+=,令f′(x)=0得,x=2,当x<2时,f′(x)<0;当x>2时,f′(x)>0,故x=2时取极小值.3.已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是()A.-12D.a<-3或a>6【解析】选D.f′(x)=3x2+2ax+a+6,函数f(x)有极大值和极小值,则f′(x)=3x2+2ax+a+6=0有两不相等的实数根,即有Δ=(2a)2-12(a+6)>0,1解得a<-3或a>6.4.(2015·济宁高二检测)已知f(x)=x3-px2-qx的图象与x轴切于(1,0),则f(x)的极值情况是()A.极大值为f,极小值为f(1)B.极大值为f(1),极小值为fC.极大值为f,没有极小值D.极小值为f(1),没有极大值【解析】选A.由函数f(x)=x3-px2-qx的图象与x轴切于点(1,0)得:p+q=1,p2+4q=0.解出p=2,q=-1,则函数f(x)=x3-2x2+x,则f′(x)=3x2-4x+1,令f′(x)=0得到:x=1或x=.当x≥1或x≤时,函数单调递增;当ln2时,f′(x)>0,函数单调递增;故函数的减区间为(-∞,ln2),增区间为(ln2,+∞),当x=ln2时函数取极小值,极小值f(ln2)=eln2-2ln2+2a=2-2ln2+2a.5.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值等于()A.2B.3C.6D.9【解题指南】利用函数在x=1处有极值得到a,b的关系式,再利用基本不等式求最大值.【解析】选D.f′(x)=12x2-2ax-2b,因为函数f(x)=4x3-ax2-2bx+2在x=1处有极值,所以f′(1)=12-2a-2b=0,即a+b=6,则ab≤=9(当且仅当a=b=3时,等号成立).二、填空题(每小题5分,共15分)26.函数f(x)=x3+3mx2+nx+m2在x=-1时有极值0,则m+n=.【解析】f′(x)=3x2+6mx+n,则代入解得或当m=1,n=3时,f′(x)=3x2+6x+3=3(x+1)2≥0,函数f(x)无极值,舍去.故m=2,n=9,故m+n=11.答案:117.(2015·陕西高考)函数y=xex在其极值点处的切线方程为.【解析】依题意得y′=ex+xex,令y′=0,可得x=-1,所以y=-.因此函数y=xex在其极值点处的切线方程为y=-.答案:y=-8.(2015·邢台高二检测)已知函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则f(-1)=.【解析】f′(x)=3x2+2ax+b,由题意得得解得:或所以f(x)=x3-3x2+3x+9或f(x)=x3+4x2-11x+16,故f(-1)=2或f(-1)=30.答案:2,30三、解答题(每小题10分,共20分)9.(2015·安徽高考)已知函数f(x)=(a>0,r>0),(1)求f(x)的定义域,并讨论f(x)的单调性.(2)若=400,求f(x)在(0,+∞)内的极值.【解析】(1)由题意知x≠-r,3所以定义域为∪(-r,+∞),f(x)==,f′(x)==,所以当x<-r或x>r时,f′(x)<0,当-r0.因此,f(x)的单调递减区间是,(r,+∞);f(x)的单调递增区间是(-r,r).(2)由(1)可知f(x)在(0,r)上单调递增,在(r,+∞)上单调递减,因此,x=r是f(x)的极大值点,所以f(x)在(0,+∞)内的极大值为f(r)===100.10.设f(x)=(x2-2x+2-a2)ex,(1)讨论该函数的单调性.(2)设g(a)为函数f(x)的极大值,证明:g(a)<2.【解析】(1)因为f(x)=(x2-2x+2-a2)ex,所以f′(x)=(x-a)(x+a)ex,①a>0,由f′(x)>0,可得x<-a或x>a,由f′(x)<0,可得-a0,可得x-a,由f′(x)<0,可得a0,函数的单调递增区间为(-∞,-a),(a,+∞),单调递减区间为(-a,a);a<0,函数...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第三章 导数及其应用 3.3 导数在研究函数中的应用 课时提升作业(二十三)3.3.2 函数的极值与导数检测(含解析)新人教A版选修1-1-新人教A版高二选修1-1数学试题

海博书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部