2.2二项分布及其应用2.2.2事件的相互独立性A级基础巩固一、选择题1.有以下三个问题:①掷一枚骰子一次,事件M:“出现的点数为奇数”,事件N:“出现的点数为偶数”;②袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M:“第1次摸到白球”,事件N:“第2次摸到白球”;③分别抛掷2枚相同的硬币,事件M:“第1枚为正面”,事件N:“两枚结果相同”.这三个问题中,M,N是相互独立事件的有()A.3个B.2个C.1个D.0个解析:①中,M,N是互斥事件;②中,P(M)=,P(N)=,即事件M的结果对事件N的结果有影响,所以M,N不是相互独立事件;③中,P(M)=,P(N)=,P(MN)=,P(MN)=P(M)·P(N),因此M,N是相互独立事件.答案:C2.一件产品要经过2道独立的加工程序,第一道工序的次品率为a,第二道工序的次品率为b,则产品的正品率为()A.1-a-bB.1-abC.(1-a)(1-b)D.1-(1-a)(1-b)解析:设A表示“第一道工序的产品为正品”,B表示“第二道工序的产品为正品”,则P(AB)=P(A)P(B)=(1-a)(1-b).答案:C3.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()A.B.C.D.解析:设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数据在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.答案:A4.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.解析:所求概率为×+×=或P=1-×-×=.答案:B5.某大街在甲、乙、丙三处设有红、绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯而停车一次的概率为()1A.B.C.D.解析:设汽车分别在甲、乙、丙三处通行为事件A,B,C,则P(A)=,P(B)=,P(C)=,停车一次即为事件ABC+ABC+ABC的发生,故概率P=××+××+××=.答案:D二、填空题6.在甲盒内的200个螺杆中有160个是A型,在乙盒内的240个螺母中有180个是A型.若从甲、乙两盒内各取一个,则能配成A型螺栓的概率为________.解析:从甲盒内取一个A型螺杆记为事件M,从乙盒内取一个A型螺母记为事件N,因事件M,N相互独立,则能配成A型螺栓(即一个A型螺杆与一个A型螺母)的概率为P(MN)=P(M)P(N)=×=.答案:7.已知P(A)=0.3,P(B)=0.5,当事件A、B相互独立时,P(A∪B)=________,P(A|B)=________.解析:因为A,B相互独立,所以P(A∪B)=P(A)+P(B)-P(A)·P(B)=0.3+0.5-0.3×0.5=0.65;P(A|B)=P(A)=0.3.答案:0.650.38.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.解析:在同一时刻两颗卫星预报都不准确的概率为(1-0.8)×(1-0.75)=0.05,则在同一时刻至少有一颗卫星预报准确的概率为1-0.05=0.95.答案:0.95三、解答题9.已知电路中有4个开关,每个开关独立工作,且闭合的概率为,求灯亮的概率.解:因为A,B断开且C,D至少有一个断开时,线路才断开,导致灯不亮,P=P(AB)[1-P(CD)]=P(A)P(B)[1-P(CD)]=××=.所以灯亮的概率为1-=.10.某班甲、乙、丙三名同学竞选班委,甲当选的概率为,乙当选的概率为,丙当选的概率为.(1)求恰有一名同学当选的概率;(2)求至多有两人当选的概率.解:设甲、乙、丙当选的事件分别为A,B,C,则有P(A)=,P(B)=,P(C)=.(1)因为A,B,C相互独立,所以恰有一名同学当选的概率为P(A\s\up14(—)\s\up14(—))+P(\s\up14(—)B\s\up14(—))+P(\s\up14(—)\s\up14(—)C)=P(A)P(\s\up14(—))P(\s\up14(—))+P(\s\up14(—))P(B)P(\s\up14(—))+P(\s\up14(—))P(\s\up14(—))P(C)=××+××+××=.2(2)至多有两人当选的概率为1-P(ABC)=1-P(A)P(B)P(C)=1-××=.B级能力提升1.从甲袋中摸出一个红球的概率是,从乙袋中摸出一个红球的概率是,从两袋各摸出一个球,则等于()A.2个球不都是红球的概率B.2个球都是红球的概率C.至少有1个红球的概率D.2个球中恰有1个红球的概...