课时跟踪检测(六十九)离散型随机变量的均值与方差、正态分布(分A、B卷,共2页)A卷:夯基保分一、选择题1.设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人三次上班途中遇红灯的次数的期望为()A.0.4B.1.2C.0.43D.0.62.(2015·太原高三期中)已知随机变量X的分布列为X123P0.20.40.4则E(6X+8)的值为()A.13.2B.21.2C.20.2D.22.23.如果X~B(20,p),当p=且P(X=k)取得最大值时,k的值为()A.8B.9C.10D.114.设随机变量X服从正态分布N(3,4),若P(X<2a-3)=P(X>a+2),则a=()A.3B.C.5D.5.(2015·芜湖一模)若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为()A.3×2-2B.2-4C.3×2-10D.2-86.某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A.100B.200C.300D.400二、填空题7.(2015·温州十校联考)一个袋子中装有6个红球和4个白球,假设每一个球被摸到的可能性是相等的.从袋子中摸出2个球,其中白球的个数为X,则X的数学期望是______.8.若随机变量X的概率分布密度函数是φμ,σ(x)=·e-(x∈R),则E(2X-1)=________.9.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的均值为______.10.一射击测试每人射击三次,每击中目标一次记10分,没有击中记0分.某人每次击中目标的概率为,则此人得分的数学期望与方差分别为______________.三、解答题11.(2015·忻州联考)现有一游戏装置如图,小球从最上方入口处投入,每次遇到黑色障碍物等可能地向左、右两边落下.游戏规则为:若小球最终落入A槽,得10张奖票;若落入B槽,得5张奖票;若落入C槽,得重投一次的机会,但投球的总次数不超过3次.(1)求投球一次,小球落入B槽的概率;(2)设玩一次游戏能获得的奖票数为随机变量X,求X的分布列及数学期望.12.(2015·昆明模拟)气象部门提供了某地区今年六月份(30天)的日最高气温的统计表如下:日最高气温t(单位:℃)t≤2222<t≤2828<t≤32t>32天数612YZ由于工作疏忽,统计表被墨水污染,Y和Z数据不清楚,但气象部门提供的资料显示,六月份的日最高气温不高于32℃的频率为0.9.某水果商根据多年的销售经验,六月份的日最高气温t(单位:℃)对西瓜的销售影响如下表:日最高气温t(单位:℃)t≤2222<t≤2828<t≤32t>32日销售额X(单位:千元)2568(1)求Y,Z的值;(2)若视频率为概率,求六月份西瓜日销售额的期望和方差;(3)在日最高气温不高于32℃时,求日销售额不低于5千元的概率.B卷:增分提能1.(2015·崇文一模)某研究机构准备举行一次数学新课程研讨会,共邀请50名一线教师参加,使用不同版本教材的教师人数如下表所示:版本人教A版人教B版苏教版北师大版人教2015510(1)从这50名教师中随机选出2名,求2人所使用版本相同的概率;(2)若随机选出2名使用人教版的教师发言,设使用人教A版的教师人数为X,求随机变量X的分布列和数学期望.2.(2014·湖北高考)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X40120发电机最多可运行台数123若某台发电机运行,则该台年利润为5000万元;若某台发电机未运行,则该台年亏损800万元.欲使水电站年总利润的均值达到最大,应安装发电机多少台?3.某市一次全市高中男生身高统计调查数据显示:全市100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上...