9.1直线的方程1.直线的倾斜角(1)定义:在平面直角坐标系中,对于一条与x轴相交的直线,把x轴所在的直线绕着交点按逆时针方向旋转到和直线重合时所转过的最小正角称为这条直线的倾斜角,并规定:与x轴平行或重合的直线的倾斜角为0°.(2)范围:直线的倾斜角α的取值范围是[0°,180°).2.斜率公式(1)若直线l的倾斜角α≠90°,则斜率k=tan_α.(2)P1(x1,y1),P2(x2,y2)在直线l上且x1≠x2,则l的斜率k=.3.直线方程的五种形式名称方程适用范围点斜式y-y1=k(x-x1)不含直线x=x1斜截式y=kx+b不含垂直于x轴的直线两点式=不含直线x=x1(x1≠x2)和直线y=y1(y1≠y2)截距式+=1不含垂直于坐标轴和过原点的直线一般式Ax+By+C=0(A,B不全为0)平面直角坐标系内的直线都适用【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)根据直线的倾斜角的大小不能确定直线的位置.(√)(2)坐标平面内的任何一条直线均有倾斜角与斜率.(×)(3)直线的倾斜角越大,其斜率就越大.(×)(4)直线的斜率为tanα,则其倾斜角为α.(×)(5)斜率相等的两直线的倾斜角不一定相等.(×)(6)经过任意两个不同的点P1(x1,y1),P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-1x1)(y2-y1)表示.(√)1.(2016·常州模拟)若直线l与直线y=1,x=7分别交于点P,Q,且线段PQ的中点坐标为(1,-1),则直线l的斜率为________.答案-解析设P(m,1),Q(7,n),由题意知解得所以P(-5,1),Q(7,-3),所以k==-.2.直线x-y+a=0的倾斜角为________.答案60°解析化直线方程为y=x+a,∴k=tanα=. 0°≤α<180°,∴α=60°.3.如图所示,直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,则直线l的斜率的取值范围为__________.答案(-∞,-]∪[5,+∞)解析设PA与PB的倾斜角分别为α、β,直线PA的斜率k1=5,直线PB的斜率k2=-.当直线l由PA变化到与y轴平行的位置PC时,它的倾斜角由α增到90°,斜率的变化范围为[5,+∞);当直线l由PC变化到PB的位置时,它的倾斜角为90°增至β,斜率的变化范围为(-∞,-],故直线l的斜率的取值范围是(-∞,-]∪[5,+∞).4.(教材改编)直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则实数a=______.2答案1或-2解析令x=0,得直线l在y轴上的截距为2+a;令y=0,得直线l在x轴上的截距为1+.依题意2+a=1+,解得a=1或a=-2.5.过点A(2,-3)且在两坐标轴上的截距互为相反数的直线方程为________________.答案3x+2y=0或x-y-5=0解析①当直线过原点时,直线方程为y=-x,即3x+2y=0;②当直线不过原点时,设直线方程为-=1,即x-y=a,将点A(2,-3)代入,得a=5,即直线方程为x-y-5=0.故所求直线的方程为3x+2y=0或x-y-5=0.题型一直线的倾斜角与斜率例1(1)(2016·镇江模拟)直线xsinα+y+2=0的倾斜角的取值范围是________.(2)直线l过点P(1,0),且与以A(2,1),B(0,)为端点的线段有公共点,则直线l斜率的取值范围为__________________.答案(1)[0,]∪[,π)(2)(-∞,-]∪[1,+∞)解析(1)设直线的倾斜角为θ,则有tanθ=-sinα.因为sinα∈[-1,1],所以-1≤tanθ≤1,又θ∈[0,π),所以0≤θ≤或≤θ<π.(2)如图, kAP==1,kBP==-,∴k∈(-∞,-]∪[1,+∞).引申探究1.若将本例(2)中P(1,0)改为P(-1,0),其他条件不变,求直线l斜率的取值范围.解 P(-1,0),A(2,1),B(0,),∴kAP==,kBP==.3如图可知,直线l斜率的取值范围为.2.若将本例(2)中的B点坐标改为(2,-1),其他条件不变,求直线l倾斜角的范围.解如图,直线PA的倾斜角为45°,直线PB的倾斜角为135°,由图象知l的倾斜角的范围为[0°,45°]∪[135°,180°).思维升华直线倾斜角的范围是[0,π),而这个区间不是正切函数的单调区间,因此根据斜率求倾斜角的范围时,要分与两种情况讨论.由正切函数图象可以看出,当α∈时,斜率k∈[0,+∞);当α=时,斜率不存在;当α∈时,斜率k∈(-∞,0).(2016·淮安模拟)若直线l:y=kx-与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是________________.答案(,)解析 直线l恒过...