考点规范练57分类加法计数原理与分步乘法计数原理考点规范练A册第41页基础巩固1.景区中有一座山,山的南面有2条道路,山的北面有3条道路,均可用于游客上山或下山,假设没有其他道路,某游客计划从山的一面走到山顶后,接着从另一面下山,则不同走法的种数是()A.6B.10C.12D.20答案:C解析:先确定从哪一面上山,有两种选择,再选择上山与下山道路,可得不同走法的种数是2×2×3=12.故选C.2.现有四种不同的颜色,要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案:D解析:按A→B→C→D顺序分四步涂色,共有4×3×2×2=48(种).3.有a,b,c,d,e共5人,从中选1名组长和1名副组长,但a不能当副组长,不同选法的种数是()A.20B.16C.10D.6答案:B解析:当a当组长时,则共有1×4=4(种)选法;当a不当组长时,又因为a也不能当副组长,则共有4×3=12(种)选法.因此共有4+12=16(种)选法.4.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个答案:B解析:由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48(个)偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72(个)偶数.故符合条件的偶数共有48+72=120(个).5.将3张不同的电影票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160B.720C.240D.120答案:B解析:分步来完成此事.第1张电影票有10种分法;第2张电影票有9种分法;第3张电影票有8种分法,共有10×9×8=720(种)分法.6.已知集合M={1,-1,2},N={-3,4,6,-8},从两个集合中各取一个元素作为点的坐标,则在平面直角坐标系中位于第一、第二象限内的不同点的个数为()A.18B.16C.14D.12答案:C解析:分两类:第一类,M中的元素作为点的横坐标,N中的元素作为点的纵坐标,在第一象限内的点共有2×2=4(个),在第二象限内的点共有1×2=2(个);第二类,M中的元素作为点的纵坐标,N中的元素作为点的横坐标,在第一象限内的点共有2×2=4(个),在第二象限内的点共有2×2=4(个).故所求不同点的个数为4+2+4+4=14.7.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4名朋友,每名朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种答案:B解析:分两类:第一类赠送1本画册,3本集邮册,需从4人中选取一人赠送画册,其余送集邮册,有C41种方法.第二类赠送2本画册,2本集邮册,只需从4人中选出2人送画册,其余2人送集邮册,有C42种方法.由分类加法计数原理,不同的赠送方法有C41+C42=10(种).8.高三年级的三个班去甲、乙、丙、丁四个工厂参加社会实践,但去哪个工厂可自由选择,甲工厂必须有班级要去,则不同的分配方案有()A.16种B.18种C.37种D.48种答案:C解析:三个班去四个工厂,不同的分配方案共43种,甲工厂没有班级去的分配方案共33种,因此满足条件的不同的分配方案共有43-33=37(种).9.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法共有种.答案:24解析:分步完成,首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,故甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).10.三边长均为正整数,且最大边长为11的三角形的个数是.答案:36解析:另两边长用x,y(x,y∈N*)表示,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12.当y取11时,x可取1,2,3,…,11,有11个三角形;当y取10时,x可取2,3,…,10,有9个三角形;…;当y取6时,x只能取6,只有1个三角形.所以所求三角形的个数为11+9+7+5+3+1=36.11.在数字0,1,2,3,4,5,6中,任取3个不同的数字为系数a,b,c组成二次函数y=ax2+bx+c,则一共可以组成个不同的解析式.答案:180解析:分三步完成,第一步任取一个数为a,由于a不为零有6种方法;第二步从剩余的6个数中任取一个数为b有6种方法;第三步从剩余的5个数中任取一个数为c有5种取法,由分步乘法计数原理得,共有6×6×5=180(个)不同的解析式.12.我们把中间位上的数字最大,而两边依次减小的多位数称为“凸数”.如132,341等,则由1,2,3,4,5可以组成无重复数字的三位“凸数”的...