第6讲几类经典的递推数列1.应用迭加(迭乘、迭代)法求数列的通项2.构造等差、等比数列求通项(1)an+1=an+f(n).(2)an+1=anf(n).(1)an+1=pan+q.(2)an+1=pan+qn.(3)an+1=pan+f(n).(4)an+2=p·an+1+q·an.1.数列{an}中,a1=1,对所有的n≥2都有a1·a2·a3·…·an=n2,则a3等于()A.94B.32C.259D.25162.若数列{an}的前n和Sn=3n+a,那么要使{an}为等比数列,则实数a的值是()A.RC.-1B.0D.不存在AC3.已知等差数列{an}和等比数列{bn}各项都是正数,且a1=b1,a2n+1=b2n+1,那么一定有()A.an+1≤bn+1B.an+1≥bn+1C.an+1<bn+1D.an+1>bn+14.已知数列{an}满足a1=2,an+1=2an-1,则an=_______.5.已知数列{an}满足Sn+an=2n+1,则a3=____.158B2n-1+1考点1递推关系形如“an+1=pan+q”的数列求通项例1:已知数列{an}中,a1=1,an+1=2an+3,求数列{an}的通项公式.解题思路:递推关系形如“an+1=pan+q”是一种常见题型,适当变形转化为等比数列.解析: an+1=2an+3,∴an+1+3=2(an+3).∴{an+3}是以2为公比的等比数列,其首项为a1+3=4.∴an+3=4×2n-1⇒an=2n+1-3.【互动探究】递推关系形如“an+1=pan+q”适用于待定系数法或特征根法:①令an+1-λ=p(an-λ);②在an+1=pan+q中令an+1=an=x⇒x=q1-p,∴an+1-x=p(an-x);③由an+1=pan+q得an=pan-1+q,∴an+1-an=p(an-an-1).1.已知数列{an}中,a1=1,an+1=23an-2,则数列{an}的通项公式为7×23n-1-6.考点2递推关系形如“an+1=pan+f(n)”的数列求通项解析:an+1=23an-2⇒an+1+6=23(an+6),∴an=7×23n-1-6.例2:已知数列{an}中,a1=12,an+1=12an+12n(n∈N*).求数列{an}的通项公式.解题思路:等价转化为an+1+A(n+1)+B=12(an+An+B),利用待定系数法求出A、B后,进而转化为等比数列.解析:令an+1+A(n+1)+B=p(an+An+B),即an+1=pan+pAn-A(n+1)+pB-B,比较系数,得A=-1,B=2,∴an+1-(n+1)+2=12(an-n+2),且a1-1+2=32≠0.∴数列{an-n+2}是等比数列,其公比为12,首项为32.∴an-n+2=32×12n-1,an=32n+n-2.【互动探究】2.在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.(1)证明数列{an-n}是等比数列;(2)设数列{an}的前n项和Sn,求Sn+1-4Sn的最大值.递推关系形如“an+1=p·an+An+B”可用待定系数法求解.解:(1)令an+1+A(n+1)+B=4(an+An+B),即an+1=4an+3An+3B-A,比较系数,得A=-1,B=0,∴an+1-(n+1)=4(an-n),且a1-1=1≠0.∴数列{an-n}是等比数列,其公比为4,首项为1.∴an-n=1×4n-1,an=4n-1+n.(2)由(1)数列{an}的通项公式为an=4n-1+n,∴数列{an}的前n项和Sn=4n-13+nn+12.Sn+1-4Sn=4n+1-13+n+1n+22-44n-13+nn+12=-12(3n2+n-4),故n=1时,Sn+1-4Sn最大,最大值为0.递推关系形如“an+1=pan+qn”的数列求通项考点3例3:已知数列{an}中,a1=1,an+1=2an+3n,求数列{an}的通项公式.解析:方法一: an+1=2an+3n,∴an+12n=an2n-1+32n,令an2n-1=bn,则bn+1-bn=32n,∴bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=32n-1+32n-2+32n-3+…+322+32+1解题思路:适当变形转化为可求和的数列.=2×32n-2.∴an=3n-2n.方法二: an+1=2an+3n,∴an+13n=23·an3n-1+1,令an3n-1=bn,则bn+1=23bn+1,转化为“an+1=pan+q”(解法略).递推关系形如“an+1=pan+qn”通过适当变形可转化为:“an+1=pan+q”或“an+1=an+f(n)n求解.【互动探究】考点4递推关系形如“an+2=pan+1+qan”的数列求通项解题思路:用待定系数法或特征根法求解.3.已知数列{an}满足a1=1,an+1-2an=2n,则an=______.n·2n-1例4:已知数列{an}中,a1=1,a2=2,an+2=3an+1-2an,求数列{an}的通项公式...