电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 第1章第4课时简单的逻辑联结词、全称量词与存在量词精品课件 文 新人教A版 课件VIP免费

高考数学总复习 第1章第4课时简单的逻辑联结词、全称量词与存在量词精品课件 文 新人教A版 课件_第1页
1/35
高考数学总复习 第1章第4课时简单的逻辑联结词、全称量词与存在量词精品课件 文 新人教A版 课件_第2页
2/35
高考数学总复习 第1章第4课时简单的逻辑联结词、全称量词与存在量词精品课件 文 新人教A版 课件_第3页
3/35
第4课时简单的逻辑联结词、全称量词与存在量词第课时简单的逻辑联结词、全称量词与存在量词4考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考1.简单的逻辑联结词(1)命题中的____、____、____叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断且或非pqp且qp或q非p真真_________假真假____真____假真假________假假假____真假真真假真假真2.全称量词与存在量词(1)全称量词:短语“对所有的”、“___________”逻辑中通常叫做全称量词,用“”∀表示;含有全称量词的命题叫做__________.(2)存在量词:短语“存在一个”、“___________”在逻辑中通常叫做存在量词,用“”∃表示;含有存在量词的命题叫做__________.对任意一个全称命题至少有一个特称命题思考感悟1.想一想,常见的全称量词和存在量词还有哪些?提示:全称量词:“一切”、“每一个”、“任给”、“所有的”;存在量词:“有些”、“有一个”、“某个”、“有的”.3.含有一个量词的命题的否定命题命题的否定∀x∈M,p(x)______________∃x0∈M,p(x0)_______________∃x0∈M,¬p(x0)∀x∈M,¬p(x)思考感悟2.全称命题与特称命题的否定有什么关系?提示:全称命题的否定是特称命题,特称命题的否定是全称命题.考点探究·挑战高考“p∨q”“p∧q”“¬p”形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)“确定p∧q”“p∨q”“¬p”形式命题的真假.判断含有逻辑联结词的命题的真假考点突跛考点突跛例例11写出由下列各组命题构成的“p或q”、“p且q”、“非p”形式的复合命题,并判断真假.(1)p:平行四边形的对角线相等;q:平行四边形的对角线互相垂直;(2)p:方程x2+x-1=0的两实根符号相同;q:方程x2+x-1=0的两实根的绝对值相等.【思路分析】(1)利用“或”、“且”、“非”把两个命题联结成新命题;(2)根据命题p和命题q的真假判断复合命题的真假.【解】(1)p∨q:平行四边形的对角线相等或互相垂直.假命题.p∧q:平行四边形的对角线相等且互相垂直.假命题.¬p:有些平行四边形的对角线不相等.真命题.(2)p∨q:方程x2+x-1=0的两实根符号相同或绝对值相等.假命题.p∧q:方程x2+x-1=0的两实根符号相同且绝对值相等.假命题.¬p:方程x2+x-1=0的两实根符号不相同.真命题.【名师点评】正确理解逻辑联结词“或”、“且”、“非”的含义是解题的关键,应根据组成各个复合命题的语句中所出现的逻辑联结词,进行命题结构与真假的判断.互动探究把例1中的要求改为“写出下列各组命题构成的(¬p)(∨¬q),(¬p)(∧¬q)形式的复合命题,并判断真假”.解:(1)¬p:有些平行四边形的对角线不相等,真命题.¬q:有些平行四边形的对角线不互相垂直,真命题.(¬p)(∨¬q):有些平行四边形的对角线不相等或不互相垂直,真命题.(¬p)(∧¬q):有些平行四边形的对角线不相等且不互相垂直,真命题.(2)¬p:方程x2+x-1=0的两实根符号不相同,真命题.¬q:方程x2+x-1=0的两实根的绝对值不相等,真命题.(¬p)(∨¬q):方程x2+x-1=0的两实根符号不相同或绝对值不相等,真命题.(¬p)(∧¬q):方程x2+x-1=0的两实根符号不相同且绝对值不相等,真命题.(1)要判断一个全称命题是真命题,必须对限定集合M中的每个元素x验证p(x)成立;但要判断全称命题为假命题,只要能举出集合M中的一个x=x0,使得p(x0)不成立即可.(2)要判断一个特称命题为真命题,只要在限定集合M中,至少能找到一个x=x0,使p(x0)成立即可;否则,这一特称命题就是假命题.全(特)称命题真假的判定例例22判断下列命题的真假.(1)∀x∈R,x2-x+1>12;(2)∃α,β,cos(α-β)=cosα-cosβ;(3)∀x,y∈N,x-y∈N;(4)∃x0,y0∈Z,2x0+y0=3.【思路分析】(1)(3)中含全称量词,使每一个x都成立才为真;(2)(4)中含存在量词,存在一个x0成立即为真.【解】(1)真命题, x2-x+1=(x-12)2+34≥34>12.(2)真命题,如α=π4,β=π2符合题意.(3)假命题,如x=1,y=5,但x-y=-4∉N.(4)真命题,如x0=0,y0=3符合题意.【规律小结】(1)要证全称命题...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 第1章第4课时简单的逻辑联结词、全称量词与存在量词精品课件 文 新人教A版 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部