杨利伟,中国太空飞行第一人yxoF1F2··25x216y2+=1······A6A1A2A3A4A5yxoF1F2··25x216y2+=1(1)对称性yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2··25x216y2+=1yxoF1F2·25x216y2+=1·A1A2·B2·B1·(2)顶点yxoF1F2··A1A2·B2·B1·(0,-b)(0,b)(a,0)(-a,0)ax2by2+=122yxoF1F2··A1A2·B2·B1·(0,-b)(0,b)(a,0)(-a,0)ax2by2+=122(3)范围求椭圆的范围的方法:(1)数形结合(2)利用不等式的性质(3)利用三角换元x/a=cos,y/b=sinyxoF1F2·25x216y2+=1·A1A2·B2·B1·25x24y2+=1C2··C1(4)离心率yxoF1F2··A1A2·B2·B1·ax2by2+=122(4)离心率yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1ax2by2+=122·yxoF1F2··A1A2·B2·B1ax2by2+=122·yxoF1F2··A1A2·B2·B1ax2by2+=122·yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122yxoF1F2··A1A2·B2·B1·ax2by2+=122离心率的变化:0(小)1(大)椭圆的变化圆扁巩固与创新应运•请同学们自己设计一个焦点在x轴上的椭圆的标准方程,并指出它的几何性质。(前后座位为一组互相探讨)•利用所学知识说出简单椭圆x2/b2+y2/a2=1的几何性质。•已知椭圆mx2+y2=1(m>0)的长轴是长轴的2倍,则m=——•求适合下列条件的椭圆的标准方程:•a)经过p(-3,0),q(0,2)•b)长轴长等于20,离心率等于0.6方程图形范围对称性顶点离心率12222byax12222bxayxyB1B2A1A2∣∣F1F2YXF1OF2__AA22AA11BB11BB220bybaxa,ayabxb,bbaaBBAA,0,,0),0,(,0,21210,,0,),,0(,,02121bbaaBBAA)10(eace)10(eace关于x轴,y轴,原点对称。关于x轴,y轴,原点对称。