电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高三数学 直线、平面平行的判定与性质复习课件VIP免费

高三数学 直线、平面平行的判定与性质复习课件_第1页
1/59
高三数学 直线、平面平行的判定与性质复习课件_第2页
2/59
高三数学 直线、平面平行的判定与性质复习课件_第3页
3/59
第八章立体几何§8.3§8.3直线、平面平行的直线、平面平行的判定与性质判定与性质知识回顾理清教材要点梳理1.直线与平面平行的判定与性质判定定义定理性质图形条件结论a∥αb∥αa∩α=∅a⊂α,b⊄α,a∥ba∥αa∥α,a⊂β,α∩β=ba∩α=∅a∥b知识回顾理清教材要点梳理2.面面平行的判定与性质判定定义定理性质图形条件α∥β,a⊂β结论α∥βα∥βa∥ba∥αα∩β=∅a⊂β,b⊂β,a∩b=P,a∥α,b∥αα∥β,α∩γ=a,β∩γ=b题号答案12345BC2(1)×夯实基础突破疑难夯基释疑②(2)√(3)×(4)√(5)×题型一直线与平面平行的判定与性质【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪思维升华解析【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维升华解析思维启迪(1)利用等腰△EDB底边中线和高重合的性质证明;(2)根据线面平行的判定或两个平面平行的性质证明线面平行.题型一直线与平面平行的判定与性质【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪思维升华解析证明(1)如图,取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO.又O为BD的中点,所以BE=DE.题型一直线与平面平行的判定与性质【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.(2)方法一如图,取AB的中点N,连接DM,DN,MN.因为M是AE的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.又因为△ABD为正三角形,所以∠BDN=30°.又CB=CD,∠BCD=120°,因此∠CBD=30°.所以DN∥BC.题型一直线与平面平行的判定与性质思维启迪思维升华解析【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.又DN⊄平面BEC,BC⊂平面BEC,题型一直线与平面平行的判定与性质又MN∩DN=N,所以平面DMN∥平面BEC.又DM⊂平面DMN,所以DM∥平面BEC.思维启迪思维升华解析方法二如图,延长AD,BC交于点F,连接EF.因为CB=CD,∠BCD=120°,所以∠CBD=30°.【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.因为△ABD为正三角形,所以∠BAD=60°,∠ABC=90°,因为∠AFB=30°,所以AB=12AF.又AB=AD,所以D为线段AF的中点.连接DM,由于点M是线段AE的中点,因此DM∥EF.题型一直线与平面平行的判定与性质又DM⊄平面BEC,EF⊂平面BEC,所以DM∥平面BEC.思维启迪思维升华解析【例1】(2012·山东)如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.思维启迪思维升华解析判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).题型一直线与平面平行的判定与性质跟踪训练1如图,在长方体ABCD-A1B1C1D1中,E,H分别为棱A1B1,D1C1上的点,且EH∥A1D1,过EH的平面与棱BB1,CC1相交,交点分别为F,G,求证:FG∥平面ADD1A1.证明因为EH∥A1D1,A1D1∥B1C1,EH⊄平面BCC1B1,B1C1⊂平面BCC1B1,所以EH∥平面BCC1B1.又平面FGHE∩平面BCC1B1=FG,所以EH∥FG,即FG∥A1D1.又FG⊄平面ADD1A1,A1D1⊂平面ADD1A1,所以FG∥平面ADD1A1.题型二平面与平面平行的判定与性质【例2】如图,在...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高三数学 直线、平面平行的判定与性质复习课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部