圆1.圆的认识(1)当一条线段OA绕着它的一个端点O 在平面内旋转一周时,它的另一个端点A 的轨迹叫做圆。或到一个定点的距离等于定长的点的集合。这个以点O为圆心的圆叫作“圆O”,记为“⊙ O”。(2)线段 OA、OB、OC都是圆的半径,线段AC为直径。(3)连结圆上任意两点之间的线段叫做弦如线段AB、BC、AC都是圆 O中的弦。(4)圆上任意两点间的部分叫做弧。如曲线BC、BAC 都是圆中的弧,分别记作?BC 、 ?BAC 其中像弧 ?BC 这样小于半圆周的圆叫做劣弧。像弧?BAC ,这样的大于半圆周的圆弧叫做优弧。(3)圆心角:顶点在圆心,两边与圆相交的角叫做圆心角。如∠AOB、∠ AOC、∠ BOC就是圆心角。2.圆的对称性(1)在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦相等。在同圆或等圆中,如果弦相等,那么所对的圆心角、所对的弧相等。在同圆或等圆中,如果弧相等,那么所对的圆心角,所对的弦相等。(2)圆是轴对称图形,它的任意一条直径所在的直线都是它的对称轴。3.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论:平分弦的直径垂直于这条弦,并且平分弦所对的弧;平分弧的直径垂直平分这条弧所对的弦。4.圆周角(1)圆周角:顶点在圆上,两边与圆相交的角叫做圆周角。(2)半圆或直径所对的圆周角都相等,都等于90° (直角)。90° 的圆周角所对的弦是圆的直径。(3)同圆或等圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。(4)同弧(或等弧)所对的圆周角相等;相等的圆周角所对的弧相等。5.点与圆的位置关系设⊙ O的半径为 r ,点圆心 O的距离为 d,则(1)点在圆外dr(2)点在圆上dr(3)点在圆内dr6.(1)过一点可以画无数个圆;过两点可以画无数个圆,圆心在两点连线的垂直平分线上;过不在同一条直线上的三个点可以确定一个圆。(2)三角形的外接圆:经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心。这个三角形叫做这个圆的内接三角形。三角形的外心就是三角形三条边的垂直平分线的交点。(3)一个三角形的外接圆是唯一的。7.直线与圆的位置关系(1)如果一条直线与一个圆没有公共点,那么就说这条直线与这个圆相离。(2)如果一条直线与一个圆只有一个公共点,那么就说这条直线与这个圆相切。此时这条直线叫做圆的切线,这个公共点叫做切点.(3)如果一条直线与一个圆有两个公共点,那么就说这条直线与这个圆相交,此...