§ 4 导数的四则运算法则 基本初等函数的导数公式(1) 若 f(x) = c( 常数 ) ,则 f′(x) =;(2) 若 f(x) = xα(αR)∈,则 f′(x) = ;(3) 若 f(x) = sin x ,则 f′(x) =;(4) 若 f(x) = cos x ,则 f′(x) =;0αxα - 1cos x- sin x(5) 若 f(x) = tan x ,则 f′(x) =;(6) 若 f(x) = cot x ,则 f′(x) =(7) 若 f(x) = ax,则 f′(x) = (a>0) ;(8) 若 f(x) = ex,则 f′(x) =;(9) 若 f(x) = logax ,则 f′(x) =(a>0 ,且 a≠1) ;(10) 若 f(x) = ln x ,则 f′(x) =.1cos2x - 1sin2x axln aex1xln a 1x 导数的运算法则(1)[f(x)±g(x)]′ =;(2)[cf(x)]′ = cf′(x)(c 为常数 ) ;(3)[f(x)·g(x)]′ =;f′(x)±g′(x)f′(x)g(x) + f(x)g′(x)(4)fxgx ′= . f′xgx-fxg′x[gx]2(g(x)≠0) 1.函数 y=x+1x的导数是( ) A.1-1x2 B.1-1x C.1+1x2 D.1+1x 解析: y′=(x)′+1x ′=1-1x2 答案: A 解析: 正确的是②③,共有 2 个,故选 C.答案: C2.下列结论:①若 y= 1x,则 y′|x=2=- 22 ;②若 y=cosx,则 y′|x=π2=-1;③若 y=ex,则 y′=ex.正确的个数是( ) A.0 B.1 C.2 D.3 3 .已知函数 y = 2xln x ,则 y′ = ________.解析: y′=(2x)′ln x+2x(ln x)′ =2xln 2ln x+2xx 答案: 2xln2ln x+2xx 4.求下列函数的导数. (1)y=x4-x3-x+3;(2)y=2x2+3x3; (3)y=x·ax(a>0);(4)lnxx (x>0). 解析: (1)y′=(x4-x3-x+3)′ =(x4)′-(x3)′-(x)′+3′ =4x3-3x2-1. (2)方法一: y=2·x-2+3·x-3, ∴y′=(2x-2+3x-3)′ =(2x-2)′+(3x-3)′ =-4x-3-9x-4=-4x3 +-9x4 =-4x3-9x4. 方法二:y′=2x2+3x3 ′=2x2 ′+3x3 ′ =2′x2-x2′·2x4+3′·x3-x3′·3x6=-4x3-9x4. (3)y′=(x)′·ax+x·(ax)′=ax+x·axlna =ax(1+xlna). (4)y′=lnxx ′=lnx′·x-lnx·x′x2=1x·x-lnxx2 =1-lnxx2. 求下列函数的导数 (1)y=x5-3x3-5x2+6;(2)y=2x2+3x3; (3)f(x)= sinx1+sinx;(4)f...