山东省师范大学附属中学 2020 届高三数学 6 月模拟检测试题(含解析)本试卷共 6 页,22 小题.考试用时 120 分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共 8 小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( ).A. B. C. D. 【答案】B【解析】【分析】首先求出集合,然后再利用集合的交运算即可求解.【详解】由集合,,所以.故选:B【点睛】本题考查了集合的交运算、一元二次不等式的解法,属于基础题.2.已知复数 z 满足 z(1+2i)=i,则复数在复平面内对应点所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】把已知等式变形,再由复数代数形式的乘除运算化简,求出的坐标得答案.【详解】解:由,得,所以复数在复平面内对应的点的坐标为,在第四象限.故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.3.已知向量,,则“m<1”是“,夹角为钝角”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】由题意结合平面向量数量积的知识可得若,夹角为钝角,则且,再由且结合充分条件、必要条件的概念即可得解.【详解】若,夹角为钝角,则且,由可得,解得且,由且可得“m<1”是“,夹角为钝角”的必要不充分条件.故选:B.【点睛】本题考查了利用平面向量数量积解决向量夹角问题,考查了充分条件、必要条件的判断,属于中档题.4.甲、乙、丙 3 人站到共有 6 级的台阶上,若每级台阶最多站 2 人,同一级台阶上的人不区分站的位置,则不同的站法总数是( )A. 90B. 120C. 210D. 216【答案】C【解析】【分析】根据题意:分为两类:第一类,甲、乙、丙各自站在一个台阶上;第二类,有 2 人站在同一台阶上,剩余 1 人独自站在一个台阶上,算出每类的站法数,然后再利用分类计数原理求解.【详解】因为甲、乙、丙 3 人站到共有 6 级的台阶上,且每级台阶最多站 2 人,所以分为两类:第一类,甲、乙、丙各自站在...