重庆市云阳县 2019-2020 学年高二数学上学期期中试题 文(含解析)一、选择题1.不等式的解集是( )A. B. C. D. 【答案】C【解析】【分析】移项通分后将分式不等式转化为一元二次不等式,解一元二次不等式求得结果.【详解】由得:,即,解得:或不等式的解集为:故选:【点睛】本题考查分式不等式的求解,关键是能够通过移项通分将问题转化为一元二次不等式的求解问题.2.椭圆的焦点坐标是( )A. B. C. D. 【答案】A【解析】【分析】由椭圆方程得到椭圆的焦点在轴上,且,即可求解椭圆的焦点坐标,得到答案.【详解】由题意,椭圆,即,可得椭圆的焦点在轴上,且,所以椭圆的焦点坐标为.故选:A.【点睛】本题主要考查了椭圆的标准方程,以及椭圆的几何性质,其中解答中熟记椭圆的标准方程,以及熟练应用椭圆的几何性质是解答的关键,着重考查了推理与运算能力,属于基础题.3.已知是等差数列的前 n 项和,若,则等于( )A. 26B. 52C. 76D. 104【答案】D【解析】【分析】根据等差数列下标和性质可求得,由可求得结果.【详解】由等差数列性质可得:,解得:故选:【点睛】本题考查等差数列性质的应用,关键是能够熟练应用等差数列下标和的性质,属于基础题.4.已知等比数列中,,,则的值是( )A. B. C. 5D. 【答案】B【解析】【分析】设等比数列的公比为,列出方程组,求得,利用等比数列的通项公式,即可求解的值,得到答案.【详解】由题意,设等比数列的公比为,因为,,可得,所以,所以,当时,;当时,,所以的值是.故选:B.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,列出方程组求得等比数列的公比,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.双曲线的渐近线方程是( )A. B. C. D. 【答案】C【解析】【分析】把双曲线方程化为,得到,结合双曲线的几何性质,即可求解.【详解】由题意,双曲线可化为,所以,所以双曲线的渐近线方程为,即.故选:C.【点睛】本题主要考查了双曲线的标准方程,以及双曲线的几何性质的应用,其中解答中熟记双曲线的渐近线方程的形式,准确运算是解答的关键,着重考查了推理与计算能力,属于基础题.6.已知实数 x 满足:;.若是的充分不必要条件,则实数a 一定满足( )A. B. C. D. 【答案】D【解析】【分析】由推出关系可得到的取值范围.【详解】由题意可得:, 故选:【点睛】本题考查根据充分不必要条件求...