摘要近二十年来超高压食品加工技术飞速发展并逐渐步入产业化。但是,和其他的新技术一样,超高压技术的产业化突破必须通过建立一个评价其对食品安全、质量方面影响的科学基础来实现,这样的定量评价无论是对满足立法安全需要还是对满足目前消费者的食品质量需求都是必不可少的。大豆富含丰富的蛋白质和合理的氨基酸组成,是国际上公认的一种全营养食品。大豆蛋白具有重要的营养价值和理化及功能特性(如凝胶性、乳化性、起泡性等),所以被作为一种具有加工功能性的食品添加用中间原料而广泛应用于食品行业。但大豆中含有多种酶类和一些抗营养因子,传统的热处理技术虽然能有效杀死致病微生物和钝化酶类,但是同样会导致一些不良的化学变化从而影响产品的品质。本研究的目的是利用新型超高压加工技术处理豆浆及大豆分离蛋白溶液,初步探讨超高压处理对豆浆品质、大豆脂肪氧合酶失活、营养抑制因子失活、大豆分离蛋白理化及功能性质的影响,为超高压加工技术在大豆制品加工中的应用、大豆蛋白的改性以及食品安全提供理论参考。以豆浆和脂肪氧合酶粗提液为对象,研究了大豆脂肪氧合酶的超高压失活动力学。结果表明,大豆脂肪氧合酶的超高压失活是不可逆的并且符合一阶反应动力学规律;在某一恒定的温度下,脂肪氧合酶的失活速率常数 k 随着超高压处理压力的增加而增大, 表明增加压力可以加快脂肪氧合酶失活;在某一恒定的压力下,脂肪氧合酶的失活速率常数在 10-20℃出现最小值,表明 Arrhenius 方程不能适用于整个温度区间;在中温区域(20℃≤T≤60℃),温度对脂肪氧合酶失活速率常数的影响随着压力的增加而降低;而脂肪氧合酶失活速率常数对压力的敏感性大约在 30℃最大。豆浆体系中脂肪氧合酶的失活速率常数要比粗酶提取液中小,但是从动力学角度来看,体系的不同并没有影响到脂肪氧合酶超高压失活的反应级数以及失活速率常数的温度敏感性和压力敏感性。在此基础上,采用两种完全不同的数学模型来描述压力与温度对脂肪氧合酶超高压失活速率常数的影响。结果表明,不管以 Eyring 方程为起点建立的经验数学模型还是以Hawley 提出的热力学方程为基础建立的热动力学数学模型,都能够成功地模拟两个体系中压力与温度对大豆脂肪氧合酶超高压失活速率常数的影响,但热动力学模型要比经验数学模型更加精确。以豆浆作为研究对象,研究并优化了大豆营养抑制因子的超高压失活条件。同样的超高压处理条件下,尿素酶发生失活的温度(室温)低于胰...