承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料) ,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。投资收益和风险问题的分析摘 要在现代商业、金融的投资中,任何理性的投资者总是希望收益能够取得最大化,但是他也面临着不确定性和不确定性所引致的风险。而且,大的收益总是伴随着高的风险。在有很多种资产可供选择, 又有很多投资方案的情况下, 投资越分散, 总的风险就越小。为了同时兼顾收益和风险,追求大的收益和小的风险构成一个两目标决策问题,依据决策者对收益和风险的理解和偏好将其转化为一个单目标最优化问题求解。随着投资者对收益和风险的日益关注 , 如何选择较好的投资组合方案是提高投资效益的根本保证。传统的投资组合遵循“不要将所有的鸡蛋放在一个蓝子里”的原则, 将投资分散化。关键词: 投资;收益;风险;数学建模0 问题提出市场上有 n 种资产 si (i = 1,2,· · · ,n) 可以选择,现用数额为M的 相当大的资金作一个时期的投资。这 n 种资产在这一时期内购买的 si 平均收益率为 ri ,风险损失率为 qi ,投资越分散,总的风险越少,总体风险可用投资的si 中最大的一个风险来度量。 购买 si时要付交易费(费率 pi ),当购买额不超过给定值ui 时,交易 费按购买 ui 计算。另外,假定同期银行存款利率是r0 ,既无交易 费又无风险。(r0 = 5%)Table: 已知 n=4 时相关数据Si ri(%) qi(%) pi(%) ui S1 28 2.5 1 103 S2 21 1.5 2 198 S3 23 5.5 4.5 52 S4 25 2.6 6.5 40 1 问题分析这是一个优化问题,要决策的是向每种资产的投资额,即所谓投资组合,要达到的目标有二,净收益最大和整体风险最小。一般来说这两个目标是矛盾的,收益大,风险必然也大;反之亦然,所以不可能给出这两个目标同时达到最优的所谓的完美决策,我们追求的只能是满足投资者本身要求的投资组合,即在一定风险下收益最大的决策,或在一定收益下风险最小的决策,或收益和风险按...