排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。教学目标1.进一步理解和应用分步计数原理和分类计数原理。2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理 (加法原理 )完成一件事,有n 类办法,在第1 类办法中有1m 种不同的方法,在第2 类办法中有2m 种不同的方法, ⋯,在第 n 类办法中有nm 种不同的方法,那么完成这件事共有:12nNmmmL种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第 1 步有1m 种不同的方法,做第2 步有2m 种不同的方法, ⋯,做第 n步有nm 种不同的方法,那么完成这件事共有:12nNmmmL种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。3.确定每一步或每一类是排列问题(有序 )还是组合 (无序 )问题 ,元素总数是多少及取出多少个元素 .4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例 1.由 0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排 ,以免不合要求的元素占了这两个位置 . 先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A练习题 :7 种不同的花种在排成一列的花盆里,若两种葵花不种在中间, 也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例 2. 7 人站成一排,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法 .解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A种不同的排法乙甲丁丙练习题 :某人射击 8 枪,命中 4 枪,4 枪命中恰好...