解析法的核与形的层次性分析摘要 解析法在如今的几何问题之中是一种十分重要的方法,解析法的形成要归根于直角坐标系创建。笛卡尔创建直角坐标系,在代数和几何上建立一座桥梁,创造用代数方法研究几何图形方法,由此解析几何形成。解析法的核心就是通过直角坐标系把几何转换成代数式的方法去解决几何问题,它的形就是求解轨迹方程的不同形式。一般方程求解,参数方程的求解,向量式参数方程求轨迹方程,消 M1求轨迹方程,用转换成“动直线”的方法来求直纹面方程这些层次,表示解析法的层次性。通过对解析法的五个步骤进行分析,对学生学习它的核心与图形在题目中的层次性来进行分析,发现其中学生对于题目中图形的理解程度不够,图形与坐标不能很好的进行结合,导致之后对找其对应的解析式也难以得出,问题就解决不了了。解析法的形的与五层次性步骤的应用体现了解析法的灵活性与深刻性。关键词: 解析法 解析几何 数形结合 直角坐标系 代数 Hierarchical Analysis of Kernel and Shape in Analytical MethodAbstract Analytic method is a very important method in today's geometric problems. The formation of analytic method depends on the creation of rectangular coordinate system. Descartes created the Cartesian coordinate system, built a bridge in algebra and geometry, created the method of using algebra to study geometry, and thus the analytic geometry was formed. The core of the analytic method is to solve the geometric problem by converting the geometry into algebraic form in rectangular coordinate system. By solving the general trajectory equation, solving the parameter equation of the trajectory equation, finding the trajectory equation with the vector formula parameter equation, eliminating M1 finding the trajectory square. Cheng, using the method of "moving point" into "moving straight line" to find these levels of straight surface equation, representing the analytic hierarchy process. Through the analysis of the five steps of the analytic method, the students learn its co...